Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Nonlinear Magnons for Reservoir Computing in Reciprocal Space

Project description

Spintronics offers a path for bio-inspired computing

The EU-funded NIMFEIA project aims to open up new applications for spintronics outside of the technology’s core areas of storage, signal processing and field sensing. Researchers will combine nanomagnetism and spintronics advances to develop a hardware solution for bio-inspired computing – a field of study seeking to solve computer science problems using biology models. Project work will build on advances in reciprocal lattice, where nonlinear spin-wave interactions mediated by nontrivial spin textures (e.g. magnetic vortices) can be efficiently harnessed for reservoir computing tasks like pattern recognition.

Objective

NIMFEIA aims to provide a hardware solution for brain-inspired computing using magnetic materials on the nanoscale combined with advanced spintronics technologies. It is based on the disruptive idea of computation in reciprocal space where nonlinear spin-wave interactions mediated by nontrivial spin textures, such as magnetic vortices, can be efficiently harnessed for reservoir computing tasks like pattern recognition and time series prediction with minimal pre-processing of input data. We will demonstrate the ground-breaking nature of our proposal by meeting four core objectives: (1) Demonstrating the core principles of reservoir computing using GHz-regime spin waves by quantifying and designing nonlinear scattering processes in reciprocal space (TRL 3); (2) Developing an experimental and scalable proof-of-concept device using industrially compatible processes (TRL 4); (3) Demonstrating the utility of the magnon reservoir on a selected pervasive real-world use case, namely gesture and feature recognition from radar data in autonomous driving scenarios (TRL 4-5); (3) Scaling the magnon reservoir to the THz regime by moving towards the edge of the Brillouin zone and through the use of antiferromagnetic materials. While Objectives 1-3 will focus on the validation of the novel technology in laboratory and industrially relevant environment, Objective 4 will provide the groundwork for pushing this technology towards THz frequency operation and 6G compatibility. NIMFEIA will lay the foundations for a new paradigm in nanomagnetic and spintronic technologies that go beyond traditional applications in binary storage and Boolean logic, radiofrequency signal processing, as well as field sensing. It will address major current technological challenges by proposing an energy-efficient computing scheme for edge computing using artificial intelligence.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL4-2021-DIGITAL-EMERGING-01

See all projects funded under this call

Coordinator

HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 779 812,50
Address
BAUTZNER LANDSTRASSE 400
01328 Dresden
Germany

See on map

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 779 812,50

Participants (6)

Partners (1)

My booklet 0 0