Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2

Project description

New materials to boost solar hydrogen production

Hydrogen fuel generation from photoelectrochemical (PEC) water splitting is one of the most promising forms of energy production. The EU-funded OHPERA project plans to develop a proof-of-concept tandem PEC cell to simultaneously achieve efficient solar-driven hydrogen production at the cathode and high added-value chemicals from industrial waste valorisation at the anode. Researchers will integrate highly efficient and stable photoelectrodes based on halide lead-free perovskite nanocrystals and tailored catalytic layers, avoiding the use of critical raw materials. Theoretical modelling both at the atomistic and device scales will aid in materials development and improve understanding of the physical mechanisms that underlie their performance. All materials and components will be integrated into a proof-of-concept device.

Objective

Photoelectrochemical (PEC) H2 generation, using water as proton and electron source, is considered the most impactful solar-driven processes to tackle the energy, environment, and climate crisis, providing a circular economy strategy to supply green energy vectors (H2) with zero carbon footprint. Aligning with this view, OHPERA will develop a proof-of-concept unbiased tandem PEC cell to simultaneously achieve efficient solar-driven H2 production at the cathode and high added-value chemicals from valorization of industrial waste (glycerol) at the anode, being sunlight the only energy input. Thus, OPHERA will demonstrate the viability of producing chemicals with economic benefits starting from industrial waste, using a renewable source of energy. For this purpose, OPHERA will integrate highly efficient and stable photoelectrodes based on halide lead-free perovskite nanocrystals (PNCs) and tailored catalytic/passivation layers, avoiding the use of critical raw materials (CRM), in a proof-of-concept eco-design PEC device. Theoretical modelling both at an atomistic and device scales will assist the materials development and mechanistic understanding of the processes, and all materials and components will be integrated in a proof-of-concept device, targeting standalone operation at 10 mA·cm-2 for 100 hours, 90% Faradaic efficiency to H2, and including a clearly defined roadmap for upscaling and exploitation. Therefore, OPHERA will offer a dual process to produce green H2 concomitant to the treatment of industrial waste generating added-value chemicals with high economic and industrial interest, thus offering a competitive LCOH.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-EIC - HORIZON EIC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EIC-2021-PATHFINDERCHALLENGES-01

See all projects funded under this call

Coordinator

UNIVERSITAT JAUME I DE CASTELLON
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 695 323,75
Address
AVENIDA VICENT SOS BAYNAT S/N
12006 Castellon De La Plana
Spain

See on map

Region
Este Comunitat Valenciana Castellón/Castelló
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 695 323,75

Participants (5)

My booklet 0 0