Project description
Innovative neuronavigational technology for brain surgery
Neuronavigation enables neurosurgeons to avoid functional brain locations when removing tumours, using computer-assisted technologies. However, the inability to maintain accurate spatial information on lesions intraoperatively remains a challenge for brain tumour surgeries. The EU-funded HyperProbe project will assemble an interdisciplinary team to develop an innovative optical intraoperative imaging system based on hyperspectral imaging (HSI) and artificial intelligence (AI), for image reconstruction and molecular fingerprinting. The novel HSI system will be handheld and user-friendly, applying AI-based algorithms for the analysis and quantification of images. The project aims to validate the developed technology in vivo, using gold standard modalities in neuronavigational imaging, and provide final proof-of-principle during brain tumour surgery.
Objective
In recent years, through the advancement of imaging technologies (such as MRI, PET, CT, among others) clinical localisation of lesions of the central nervous system (CNS) pre-surgery has made possible for neurosurgeons to plan and navigate away from functional brain locations when removing tumours. However, neuronavigation in the surgical management of brain tumours remains a significant challenge, due to the inability to maintain accurate spatial information of lesioned and non-lesioned locations intraoperatively. To answer this challenge, we have put together a team of engineers, physicists, data scientists and neurosurgeons to develop an innovative, all-optical intraoperative imaging system based on (i) hyperspectral imaging (HSI) for rapid, multi wavelength spectral acquisition, and (ii) artificial intelligence (AI) for image reconstruction and molecular fingerprint recognition. Our intraoperative HSI system (HyperProbe) will (1) map, monitor and quantify biomolecules of interest; (2) be handheld and user-friendly; (3) apply AI-based methods for the reconstruction of spectral images, the analysis of spatio-spectral data and the development and quantification of novel biomarkers. We will validate the developed capacity in phantoms, in vivo against gold standard modalities in neuronavigational imaging, and finally provide proof-of principle during brain tumour surgery. HyperProbe aims at providing functional and structural information on biomarkers of interest that is currently missing during neuro-oncological interventions.
Fields of science
Not validated
Not validated
Programme(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Funding Scheme
HORIZON-EIC - HORIZON EIC GrantsCoordinator
50121 Florence
Italy