Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Gravitational interferometry with entangled states in optical fibers

Objective

The four known interactions that occur in nature can be described either by Einstein's general relativity or by quantum field theory. Over the last decades physicists have tried to put these two pillars of modern physics on a common foundation. In doing so, they have been limited by a lack of experiments at the interface of these two frameworks. Both theories have been independently verified with astonishing precision, but all verifications to date have come without drawing on concepts from the other theory.
The goal of GRAVITES is to perform experiments at the interface of quantum physics and general relativity. For the first time, we will measure gravitational properties of single and entangled photons in the background of Einstein’s gravity. To this end, GRAVITES aims to combine four complementary disciplines: quantum photonics and precision interferometry guided by expertise in general relativity and quantum field theory. The synergy among the research groups will realize a large-scale fiber interferometer with unprecedented precision.
Since the sensitivity of GRAVITES’s apparatus must exceed present large-scale fiber-based quantum interferometers by orders of magnitude, the two experimental teams must combine cutting-edge technologies in their respective fields for advancing single-photon interferometry. These developments are also of direct relevance for many other applications such as quantum metrology and quantum sensing. In parallel, the theory teams will investigate the combined effects of gravitation and field quantization in dielectric waveguides.
With this united effort GRAVITES is in the position to explore new physics that determines the gravitational properties of quantum superposition and quantum entanglement. This will allow us to create a unique experimental platform for probing how gravity interacts with the quantum world.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-SYG - HORIZON ERC Synergy Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-SYG

See all projects funded under this call

Host institution

UNIVERSITAT WIEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 4 337 782,50
Address
UNIVERSITATSRING 1
1010 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 4 337 782,50

Beneficiaries (4)

My booklet 0 0