Skip to main content
European Commission logo print header

Lipid droplets as innate immunity hubs

Project description

Investigating the antibiotic potential of lipid droplets

Lipid droplets (LDs) are not simply a source of nutrients for invading microorganisms. Recent research has shown that they can also possess antibiotic activity. The EU-funded DRIMMS project will investigate the role of LDs in the innate immune response of eukaryotic cells. Using high-throughput proteomics and lipidomics, 3D electron tomography, confocal microscopy and biochemical methods, the project will characterise how LDs coordinate and execute immune responses. It will also study the response to Mycobacterium tuberculosis to understand how it resists LD-mediated defences. The project’s findings will be useful for the development of new anti-infective therapies, especially in the face of growing antimicrobial resistance and viral pandemics.


Successful defence against invaders is critical for survival of eukaryotic cells. Microbes have developed many strategies to subvert host organisms which, in turn, evolved several innate immune responses to counterattack. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Pathogens induce and physically interact with LDs and the current view is that they ‘hijack’ LDs to draw on substrates for host colonisation. We recently challenged this dogma by demonstrating that LDs are endowed with a regulated protein-mediated antibiotic activity. Our work intro-duced the new concept that dependence on host nutrients is a generic ‘Achilles’ heel’ of intracellular pathogens and LDs a chokepoint harnessed by innate immunity to organise a front-line defence.

Here, we have formed a multidisciplinary group combining complementary knowledge and transdiscipli-nary expertise to investigate the hypothesis that LDs are innate immunity hubs sensing infection and di-rectly confronting invaders. We will characterise, in cells and animals, how LDs efficiently coordinate and precisely execute a plethora of immune responses such as killing, signalling and inflammation. High-throughput proteomics and lipidomics will identify defensive players. 3D electron tomography and confo-cal microscopy will be combined with proximity labelling strategies and biochemical methods to get un-precedented understanding of host LD-pathogen dynamics. The successful pathogen Mycobacterium tuber-culosis will be used to test the medical significance of our findings and unravel bacterial mechanisms of resistance to LD-mediated defences.

Characterisation of these novel innate immune systems will be paradigm-shifting in immunology, physiol-ogy and cell biology. In the age of antimicrobial resistance and viral pandemics, unravelling how eukaryot-ic LDs fight and defeat dangerous microorganisms will inspire new anti-infective therapies.

Funding Scheme



Net EU contribution
€ 3 141 849,00
Carrer rossello 149
08036 Barcelona

See on map

Este Cataluña Barcelona
Activity type
Research Organisations
Other funding
€ 0,00

Participants (2)