Objective
The ability of cells to sense environmental cues and respond to them by adjusting their shape and motion is fundamental for biological processes ranging from animal development to disease. Much is known about how cells sense and respond to the geometry and mechanics of their environment by adhering to and pulling on the substrate. However, recent studies demonstrated that cells also strongly depend on non-adhesive interactions with the environment and that they probe, sense and deform their surroundings by pushing into them.
The goal of this project is to address the mechanisms controlling cell shape and cell-substrate interactions via pushing forces.
We will focus on three levels of cell organization:
1. Nanoscale pushing: We will investigate how cells locally sense and respond to obstacles without adhering to them and quantify the associated forces. Using micro-engineered substrates and tissue mimics, we will molecularly and biophysically dissect, biochemically reconstitute and theoretically model the interface between an obstacle, the plasma membrane and the actin cortex.
2. Mesoscale cell mechanics: We will investigate how actin, microtubules and intermediate filaments collaborate to generate and extend mesoscopic cell protrusions that push by adhesion-independent mechanisms. We will combine cell biological experiments and optogenetics with modeling and bottom-up reconstitutions.
3. Global force balance: We will examine adhesion-independent mechanisms that allow a cell to coordinate competing protrusions, maintain its integrity and translocate in complex environments. Using biophysical measurements and local molecular perturbations, we will test models of long-range communication within cells.
Our work will provide new fundamental insights into biological and physical principles underlying the control of cell shape, integrity and motility, which are key to most physiological processes from development and homeostasis to cancer, immune responses and regeneration.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine oncology
- natural sciences mathematics pure mathematics geometry
- medical and health sciences basic medicine physiology homeostasis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-SYG - HORIZON ERC Synergy Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-SYG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.