Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

High-dimensional nonparametric Bayesian causal inference

Description du projet

Approche bayésienne non paramétrique pour la sélection de variables dans l’inférence causale à haute dimension

L’inférence causale peut devenir plus difficile lorsque l’on dispose d’un plus grand nombre de données. Dans les environnements à haute dimension, l’inclusion de toutes les variables est impossible, tandis que l’inclusion d’un nombre insuffisant de variables mène à des résultats pouvant être erronés. La sélection des variables est donc une nécessité, mais les méthodes disponibles sont limitées. Le projet BayCause, financé par le CER, entend mettre au point des méthodes et des théories bayésiennes non paramétriques adaptées à la sélection de variables dans l’inférence causale à haute dimension. Des avancées théoriques récentes dans le théorème de Bernstein-von Mises et la régression non paramétrique à haute dimension ont favorisé l’application d’approches non paramétriques bayésiennes dans l’inférence causale. Les méthodes développées dans le cadre du projet permettront d’élargir les contextes limités dans lesquels une inférence causale fiable à haute dimension est possible, ce qui mènera à des applications en médecine, en économie et dans d’autres domaines.

Objectif

Causal conclusions are at the center of research, yet notoriously difficult to obtain. Many research studies report correlations only, which, in line with the maxim, do not imply causation. With correlations, one can make predictions. With causation, one can intervene.
Paradoxically, causal inference can become harder when more data becomes available. In the by now increasingly common high-dimensional settings which are the focus of this proposal, including all variables is impossible while including too few can severely bias results. Variable selection becomes necessary, yet available methods are in short supply.
My aim is to develop Bayesian nonparametric methods and theory for high-dimensional causal inference. Bayesian nonparametrics is eminently suited for variable selection in causal inference, because it excels at both incorporating and describing uncertainty. Recent theoretical advances, in particular in Bernstein-von Mises theory and high-dimensional nonparametric regression, have now finally opened up causal inference to Bayesian nonparametric approaches.
I will investigate high-dimensional versions of the two most important causal frameworks, based on unconfoundedness and directed acyclic graphs. I will focus on novel aspects scarcely available in the literature, including uncertainty quantification, a broad range of data types, and nonlinear relationships.
My expertise in causal inference, Bayesian nonparametrics, variable selection and survival analysis puts me in a unique position to work on this multifaceted challenge. My dual track in theoretical and applied statistics enables me to identify the problems which have highest priority in practice and are mathematically interesting. The novel methods with solid mathematical statistical foundation resulting from this proposal will tremendously expand the now limited settings in which trustworthy high-dimensional causal inference is possible, with applications in medicine, economics and many other fields.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2022-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

STICHTING VU
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 185 995,44
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 282 361,69

Bénéficiaires (2)

Mon livret 0 0