Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The possibility of artificial life at subzero temperatures: the role of water in cell-mimicking compartments

Project description

Survival mechanism of life below water’s freezing point

Researchers believe that life is associated with liquid water. However, the lowest limit to sustain the metabolic activities of bacteria is -20 °C in permafrost. Our knowledge of the survival mechanism of life below the freezing point of water remains limited. Intracellular liquid water serves as solution medium and plays a critical role in biological processes. Understanding the physical state of intracellular water at subzero temperatures is pivotal. The EU-funded ArtWater project will employ synthetic compartments as a model system to investigate the physical state of compartmentalised water at subzero temperatures. The project will also provide a new platform for tunable bioengineering processes such as cryopreservation and cryo-enzymology and shed light on astrobiology.

Objective

In the last few decades, researchers have come to believe that where there is liquid water, there is life, regardless of the physical conditions of the surroundings. Indeed, living organisms have been discovered in environments with extreme temperatures, radiation, or high salinity. In terms of temperature, the lowest limit to sustain the metabolic activities of bacteria is reported to be -20 ºC in permafrost. Yet, the survival mechanism of life below the freezing point of water is still not fully understood, though it has important implications for origin of life studies and the search for life in the universe.
The prerequisite of life at subzero temperatures is the existence of liquid water. Intracellular liquid water not only serves as solution medium, but also plays a crucial role in biological processes such as metabolisms in cells. Therefore, understanding the physical state of intracellular water at subzero temperatures is important.
In ArtWater, we will employ synthetic compartments as model system to investigate the physical state of compartmentalized water at subzero temperatures. The project will be conducted through a bottom-up approach: from pure water in compartments to crowded compartmentalized solutions that mimic cytoplasm in natural cells. The crystallization, diffusion, and dynamics of water will be studied by differential scanning calorimetry, nuclear magnetic resonance, and broadband dielectric spectroscopy, respectively. Several types of state-of-the-art synthetic compartments will be employed including polymersomes, liposomes, and complex coacervates. Furthermore, we will develop artificial cells equipped with liquid water enabling biological activities at subzero temperatures. The ArtWater project will not only open the window for understanding the survival mechanisms at extremely low temperatures but also provide a new platform for tunable bioengineering processes such as cryopreservation and cryo-enzymology and shed light to astrobiology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-STG

See all projects funded under this call

Host institution

UNIVERSITEIT UTRECHT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 749 375,00
Address
HEIDELBERGLAAN 8
3584 CS Utrecht
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 749 375,00

Beneficiaries (1)

My booklet 0 0