Project description
Insight into flow-acoustic interactions could lead to more effective sound-absorbing materials
Characterisation methods of sound-absorbing materials are affected by a lack of description of the interactions between acoustic waves and the turbulent boundary layer over the material surface. Funded by the European Research Council, the LINING project will investigate unexplained experimental findings discovered when a sound wave encounters turbulent air currents over surfaces treated with acoustic liners. Researchers will measure acoustic and hydrodynamic velocities near an acoustically treated surface with new experiments and high-fidelity numerical simulations. Describing how flow and acoustics interact over aircraft engine noise reduction technologies could pave the way for the development of future sound-absorbing surfaces with greater noise reduction and lower drag.
Objective
The lack of fundamental knowledge of the interaction between an acoustic wave and a turbulent boundary layer grazing an acoustically treated surface, such as an acoustic liner, is the cause of unexpected and unphysical results found when performing the acoustic characterization of the sound absorbing surface with inverse eduction methods. This is because, in this field, acoustic and aerodynamic have never been fully coupled.
To fill this knowledge gap, the acoustic and hydrodynamic velocities near an acoustically treated surface must be measured. Since it cannot be done only with state-of-the-art experiments, because of hardware and field-of-view limitations, I propose to complement experiments with scale-resolved high-fidelity numerical simulations based on the lattice-Boltzmann very-large-eddy simulation method.
Numerical results will be used to explain the physics of the acoustic-flow interaction. Advanced data analysis methodologies will be developed and applied to separate the acoustic-induced velocity near the wall from the hydrodynamic one. At the same time, the numerical database will be used to compare inverse methods, employed to acoustically characterize the sound absorbing surfaces, in order to explain the physical reasons behind the unexpected results, and propose physics-based corrections. Furthermore, by describing the flow-acoustic interaction, it will be possible to model and predict the drag increase caused by the coupling between the acoustic-induced velocity and the free-stream one.
My description of the flow-acoustic interaction will solve the scientific debate about the unexpected results and pave the way towards future broadband low-noise low-drag acoustic meta-surfaces to increase propulsion efficiency and reduce noise of future, more sustainable, aircraft engines.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics
- natural sciences physical sciences acoustics
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aeronautical engineering
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10129 Torino
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.