Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Real-time monitoring of earthquake nucleation for faults near urban areas

Project description

Identifying earthquake nucleation processes for faults near cities

Earthquakes can display different amplitudes and durations, and not all large earthquakes have detectable precursory signals. The EU-funded QUAKEHUNTER project aims to study earthquake nucleation processes to detect precursory signals before moderate to large earthquakes. It will use artificial intelligence to identify these processes for active faults near earthquake-prone areas, with a focus on the North Anatolian Fault in northwest Turkey. The project will determine the optimal approach and instrumentation for understanding earthquake nucleation processes and deduce the fault conditions under which they occur.

Objective

A longstanding, lingering question in geoscience is whether earthquakes show a precursory nucleation process. Precursory signals from well-recorded large earthquakes displayed widely different amplitude or duration, and some large earthquakes displayed no detectable precursors. The main objectives of QUAKE-HUNTER are (1) to determine the most effective approaches to detect fault-related transients preceding moderate to large earthquakes, and (2) to monitor seismic and aseismic processes and infer from them the fault conditions under which earthquake nucleation processes emerge, and the optimal instrumentation required to capture them. To achieve these, we will develop different methodologies based on a combination of supervised and unsupervised artificial intelligence to identify retrospectively earthquake nucleation processes for active faults near earthquake-threatened urban areas. The ultimate goal will be to test the performance of this novel earthquake forecasting methodology in near-real time.
We will analyze data from north-western Turkey, where the North Anatolian Fault is overdue for a magnitude M>7 earthquake directly adjacent to the Istanbul megalopolis with its >15M inhabitants. The groundbreaking part of QUAKE-HUNTER is that if earthquake nucleation processes could be discerned prior to large earthquakes in the Marmara region, then automated near-real-time detection could provide extended warning and preparation time. If successful, this could become in the future an essential ingredient for activating civil protection protocols to mitigate seismic risk. QUAKE-HUNTER aims at having a strong scientific impact on earthquake physics: we will be able to refine our knowledge on the physics of earthquakes shortly before their start, as well as the fault conditions favoring the identification of earthquake precursors. The first-time testing of such methodology in real-time will have a strong societal impact, potentially advancing earthquakes forecasting.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-STG

See all projects funded under this call

Host institution

GFZ HELMHOLTZ-ZENTRUM FUR GEOFORSCHUNG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 499 731,00
Address
TELEGRAFENBERG
14473 POTSDAM
Germany

See on map

Region
Brandenburg Brandenburg Potsdam
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 499 731,00

Beneficiaries (1)

My booklet 0 0