Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Foundations for Sustainable Security

Project description

Efficient mechanisms for sustainable security

Electricity consumption by IT is growing, but resource sharing introduces information leakage risks, while reduced reliability margins cause fault attacks. Security is added to reliability mechanisms without considering adversaries, adding energy costs. The EU-funded FSSec project aims to improve efficiency by measuring security, designing efficient security mechanisms, using security to increase efficiency, and securing microarchitectural optimisations and lightweight isolation. The project will integrate principled cryptography grade security into all system layers, minimising and superseding inefficient reliability mechanisms to establish innovative foundations for sustainable security.

Objective

Security and efficiency are often seen as a conflict. IT already consumes 11% of electricity globally, with a steep upwards trend. Resource sharing increases efficiency but introduces information leakage vulnerabilities, such as Meltdown and Spectre. Reducing reliability margins also increases efficiency but introduces fault attacks, such as Rowhammer and Plundervolt. This reveals a fundamental problem in current systems: Reliability mechanisms are not designed with adversaries in mind. Security is then patched on top of reliability mechanisms, incurring additional energy costs.

We will overcome the conflict between security and efficiency with novel foundations to make security sustainable and use security to increase efficiency. We will research how to measure the efficiency of security, design principled and efficient security mechanisms, utilize security to increase efficiency, secure microarchitectural optimizations, and secure lightweight isolation.

Our methodology is to integrate principled cryptography-grade security into all system layers to minimize and supersede inefficient reliability mechanisms. We will develop a framework for fine-grained energy efficiency measurements. We will research fine-grained replication for side-channel isolation, maintaining efficiency. We will explore selective resource sharing for secure variables, enclaves, and virtual machines, superseding today's inefficient and insecure techniques.

The originality of FSSec stands out in that energy efficiency has played no role in security so far. In particular, using cryptography to replace established error correction methods will be the key to our goal of using security to increase efficiency by 20% compared to current systems. We will construct secure optimizations with fine-grained isolation, increasing the efficiency without adding side channels.

Asst.-Prof. Daniel Gruss heads an internationally renowned security research group. FSSec will fund 6 PhD students.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-STG

See all projects funded under this call

Host institution

TECHNISCHE UNIVERSITAET GRAZ
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 498 489,00
Address
RECHBAUERSTRASSE 12
8010 Graz
Austria

See on map

Region
Südösterreich Steiermark Graz
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 498 489,00

Beneficiaries (1)

My booklet 0 0