Project description
Synergistic strategies for reversing vascular compression in cancer
In certain types of cancer, blood vessels endure compression due to stiffness caused by the intricate interactions between cancer cells and the tumour microenvironment. This leads to reduced blood flow, compromising drug delivery and effectiveness, as well as helping cancer cells evade immune responses. Funded by the European Research Council, the MMSCancer project proposes to combine strategies that mechanically modulate the tumour microenvironment. The synergistic effect of mechanotherapeutics and ultrasound sonopermeation is expected to improve drug delivery through impermeable tumours. Researchers will employ both computational modelling and experimentation to improve the methodology of these strategies.
Objective
Inefficient drug delivery to tumors can reduce dramatically treatment efficacy and thus, affect negatively the life of cancer patients. This is particularly evident in desmoplastic cancers where interactions among cancer cells, stromal cells and the fibrotic matrix cause tumor stiffening and accumulation of mechanical forces that compress tumor blood vessels. Indeed, in subsets of pancreatic cancers and sarcomas, 95% of intratumoral blood vessels may be compressed and up to 80% totally collapsed leading to reduced blood flow (hypo-perfusion) and drug delivery. Hypo-perfusion also leads to hypoxia that helps cancer cells evade the immune system and increase their invasive and metastatic potential. Use of mechanotherapeutics and ultrasound sonopermeation are two mechano-modulation strategies that separately have been employed to treat vascular abnormalities in tumors. Even though these strategies have reached the clinic, their promise has yet to be realized by cancer patients owning to limitations of the methods. My hypothesis is that these strategies can uniquely complement each other and have not only additive, but highly multiplicative synergistic effects on modulating the desmoplastic tumor microenvironment and improving the efficacy of the promising but still of limited use nano-immunotherapy. However, it is crucial that specific guidelines should be developed. To achieve this ground-breaking goal, I will employ a mixture of cutting-edge computational and experimental techniques. I will perform in vivo mice studies in pancreatic cancers and sarcomas to investigate under what conditions these mechano-modulation strategies can be optimally combined to improve treatment efficacy, prevent metastasis and increase survival. In parallel, I will develop new mathematical models to provide useful guidelines for optimizing the experimental protocol. MMSCancer will introduce novel therapeutic strategies for the treatment of drug resistant tumors leading to better therapies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2371 AGIOS DOMETIOS
Cyprus
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.