Descripción del proyecto
Nuevos planteamientos teóricos ayudan a descifrar la naturaleza cuántica de los agujeros negros
Un grupo de científicos ha empleado la correspondencia holográfica, un marco teórico bien establecido, para lograr avances notables en la comprensión de las esquivas propiedades cuánticas de los agujeros negros. Este marco vincula la mecánica cuántica y la relatividad general para tratar los agujeros negros como hologramas. Sin embargo, esta correspondencia se ha examinado sobre todo en los espaciotiempos anti-de Sitter, que presentan una curvatura negativa. El equipo del proyecto CeleBH, financiado por el Consejo Europea de Investigación, tiene por objeto aplicar la correspondencia holográfica a los espaciotiempos asintóticamente planos, que se caracterizan por la ausencia de curvatura en el infinito, es decir, en las regiones alejadas de los agujeros negros. Sus investigadores combinarán la holografía celeste, que postula que la gravedad cuántica en el espacio plano puede describirse mediante una teoría del campo conforme celeste alojada en la esfera en el infinito, y simetrías de dimensión infinita que surgen cerca de los horizontes de sucesos de los agujeros negros.
Objetivo
Black holes are at the root of the most striking puzzles that arise when attempting to combine quantum mechanics and general relativity; they are therefore thought to be key to a formulation of a theory of quantum gravity. In recent years, progress in our understanding of the elusive quantum nature of black holes has been made thanks to the so-called holographic correspondence, which has provided theoretical physicists with a powerful tool to study quantum gravity. However, these methods are so far only fully developed for anti-de Sitter spacetimes, whereas understanding realistic black holes would require to develop a holographic correspondence for asymptotically flat spacetimes.
The aim of this project is to make major steps towards a holographic description of quantum gravity in asymptotically flat spacetimes, and to address some of the unresolved key issues in black hole physics, especially in understanding the mysterious origin of their vast entropy. To do so, I propose to combine two novel emergent ideas: The first is a new approach to holography in flat spacetimes called celestial holography, which proposes that quantum gravity in flat space can be described by a celestial conformal field theory living on the sphere at infinity. The second is based on the recent discovery, in my previous works, of the existence of intriguing infinite-dimensional symmetries that appear close to black holes’ event horizon. The infinite set of asymptotic conservation laws in the presence of horizons is awaiting to be unraveled, as it will reveal unexplored constraints on information flow for black holes in flat spacetimes.
Thanks to this unique combination of powerful approaches based on symmetry principles, my research project aims at addressing the challenge of a holographic formulation of spacetimes that include realistic black holes, such as the ones we observe in the sky.
Ámbito científico
- natural sciencesphysical sciencesrelativistic mechanics
- natural sciencesphysical sciencesquantum physics
- natural sciencesphysical sciencesastronomyastrophysicsblack holes
- natural sciencesmathematicsapplied mathematicsmathematical physicsconformal field theory
- natural sciencesphysical sciencestheoretical physics
Palabras clave
Programa(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Régimen de financiación
ERC - Support for frontier research (ERC)Institución de acogida
34136 Trieste
Italia