Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Data-Driven Verification and Learning Under Uncertainty

Project description

Verification mechanisms for reinforcement learning

Reinforcement learning (RL) is a type of machine learning that allows an agent (AI) to learn through trial and error. However, it generally lacks mechanisms to ensure constantly correct behaviour concerning sophisticated tasks and safety specifications. Formal verification (FV) relies on rigorous methods and precise specifications to provide guarantees of a system's correctness. However, critical challenges prevent the application of FV to RL. The EU-funded DEUCE project will develop innovative data-driven verification methods that tightly integrate with RL. It will design learning-based abstraction schemes that distil the system parts relevant for correctness and employ and define models whose expressiveness captures several types of uncertainty. DEUCE will deliver model-based FV mechanisms to explore RL agents safely and correctly.

Objective

Reinforcement learning (RL) agents learn to behave optimally via trial and error, without the need to encode complicated behavior explicitly. However, RL generally lacks mechanisms to constantly ensure correct behavior regarding sophisticated task and safety specifications.

Formal verification (FV), and in particular model checking, provides formal guarantees on a system's correctness based on rigorous methods and precise specifications. Despite active development by researchers from all over the world, fundamental challenges obstruct the application of FV to RL so far.

We identify three key challenges that frame the objectives of this proposal.
(1) Complex environments with large degrees of freedom induce large state and feature spaces. This curse of dimensionality poses a longstanding problem for verification.
(2) Common approaches for the correctness of RL systems employ idealized discrete state spaces.
However, realistic problems are often continuous.
(3) Knowledge about real-world environments is inherently uncertain.
To ensure safety, correctness guarantees need to be robust against such imprecise knowledge about the environment.

The main objective of the DEUCE project is to develop novel and data-driven verification methods that tightly integrate with RL. To cope with the curse of dimensionality, we devise learning-based abstraction schemes that distill the system parts that are relevant for the correctness. We employ and define models whose expressiveness captures various types of uncertainty. These models are the basis for formal and data-driven abstractions of continuous spaces. We provide model-based FV mechanisms that ensure safe and correct exploration for RL agents.

DEUCE will elevate the scalability and expressiveness of verification towards real-world deployment of reinforcement learning.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-STG

See all projects funded under this call

Host institution

RUHR-UNIVERSITAET BOCHUM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 763 231,29
Address
UNIVERSITAETSSTRASSE 150
44801 Bochum
Germany

See on map

Region
Nordrhein-Westfalen Arnsberg Bochum, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 763 231,29

Beneficiaries (2)

My booklet 0 0