Descrizione del progetto
Meccanismi di verifica destinati all’apprendimento per rinforzo
L’apprendimento per rinforzo è un tipo di apprendimento automatico che consente a un agente (IA) di imparare attraverso prove ed errori. Questo sistema tuttavia è generalmente privo di meccanismi atti a garantire un comportamento sempre corretto nello svolgimento di compiti sofisticati e nelle indicazioni di sicurezza. La verifica formale si basa su metodi rigorosi e specifiche precise per fornire garanzie sulla correttezza di un sistema, ma la sua applicazione all’apprendimento per rinforzo è ostacolata da difficoltà cruciali. Il progetto DEUCE, finanziato dall’UE, svilupperà metodi di verifica innovativi orientati dai dati che si integrano perfettamente con l’apprendimento per rinforzo. Progetterà schemi di astrazione basati sull’apprendimento che estraggono le parti del sistema rilevanti ai fini della correttezza, oltre che impiegare e definire modelli la cui espressività rileva vari tipi di incertezza. DEUCE fornirà meccanismi di verifica formale basati sui modelli per esaminare gli agenti dell’apprendimento per rinforzo in modo sicuro e corretto.
Obiettivo
Reinforcement learning (RL) agents learn to behave optimally via trial and error, without the need to encode complicated behavior explicitly. However, RL generally lacks mechanisms to constantly ensure correct behavior regarding sophisticated task and safety specifications.
Formal verification (FV), and in particular model checking, provides formal guarantees on a system's correctness based on rigorous methods and precise specifications. Despite active development by researchers from all over the world, fundamental challenges obstruct the application of FV to RL so far.
We identify three key challenges that frame the objectives of this proposal.
(1) Complex environments with large degrees of freedom induce large state and feature spaces. This curse of dimensionality poses a longstanding problem for verification.
(2) Common approaches for the correctness of RL systems employ idealized discrete state spaces.
However, realistic problems are often continuous.
(3) Knowledge about real-world environments is inherently uncertain.
To ensure safety, correctness guarantees need to be robust against such imprecise knowledge about the environment.
The main objective of the DEUCE project is to develop novel and data-driven verification methods that tightly integrate with RL. To cope with the curse of dimensionality, we devise learning-based abstraction schemes that distill the system parts that are relevant for the correctness. We employ and define models whose expressiveness captures various types of uncertainty. These models are the basis for formal and data-driven abstractions of continuous spaces. We provide model-based FV mechanisms that ensure safe and correct exploration for RL agents.
DEUCE will elevate the scalability and expressiveness of verification towards real-world deployment of reinforcement learning.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-ERC - HORIZON ERC Grants
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2022-STG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
44801 Bochum
Germania
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.