Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

On-demand COMmunication between fluorescent organic nanoparticles through Energy Transfer

Project description

An important step forward in the development of biosensors

Biosensors are powerful tools that can detect biological or chemical analytes and convert them into measurable signals. Real-time detection is important for many applications. Funded by the European Research Council, the COMET project will develop innovative optical biosensors based on communicating nanoparticles whose response is modulated by the presence of analytes, especially opioids. Specifically, the project will investigate the self-assembly of fluorescent organic nanoparticles (FONs) with a biological recognition moiety in water. The FONs will be integrated into nano-constructions to enable energy transfer between donor and acceptor FONs. Stimuli-responsive biosensors will be designed based on the triggered disruption of these nano-assemblies by opioids. This new generation of continuous ratiometric biosensors will have significant implications for point-of-care and bio-imaging medicine.

Objective

In situ and real-time detection of analytes in complex biological media requires the development of robust and sensitive biosensors. In this context, the interdisciplinary COMET project will develop innovative optical biosensors based on communicating nanoparticles (NPs) whose response is modulated by the presence of opioids.
To date, robust inter-particle communication between optically-active NPs has only been described with inorganics, involving either electron or resonance energy transfer. Despite their excellent optical properties, inorganic NPs raise environmental and biocompatibility concerns with respect to their toxicity or colloidal stability. In that regard, Fluorescent Organic Nanoparticles (FONs) are an interesting alternative: FONs are composed of organic dyes condensed in a small volume and engineered to display intense absorption and excellent brightness. The optimal arrangement of spectrally complementary FONs acting as synergistic energy donors and acceptors will address the critical challenge of achieving communication between NPs and signal amplification.
To meet this goal, COMET will reinvent the classical FONs elaboration by investigating the self-assembly of dedicated dyes concomitantly with a biological recognition moiety in water. Spectrally relevant FONs will be associated into nano-constructions in which a donor and an acceptor FON are brought together to enable energy transfer. I will then design stimuli-responsive biosensors based on the triggered disruption of these nano-assemblies by an analyte, particularly opioids. The detection of nanomolar traces of opioids will be achieved thanks to signal amplification through cascade energy transfers within and between FONs.
Such communicating nano-tools will provide the next generation of continuous ratiometric biosensors. In addition, they will open the way to a new paradigm in excitation energy migration and impact other research fields such as optoelectronics and nanomedicine.

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution
€ 1 500 000,00
Address
RUE MICHEL ANGE 3
75794 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost
€ 1 500 000,00

Beneficiaries (1)