Objective
Despite more than a century of interest in the effects of energetic particles in matter, quantitative predictions of the radiation damage remain elusive in many cases. The goal of this project is to transform the study of radiation-induced damage in semiconductors from an empirical approach to one of fundamental physics, to obtain reliable predictions of radiation damage crucial for practical applications.
Particle irradiation effects are of great importance, since they can modify the physical and mechanical properties of materials, the outcome of which is often detrimental to the materials employed in high radiation environments. Conversely, ion irradiation also has the potential to improve material performance, and ion beam modification of materials is used widely in semiconductor technology. In this project, I will elucidate the fundamental quantum effects under irradiation in semiconductors, and their impact on the atomic dynamics, through a multi-scale modelling scheme employing a combination of ab initio calculations and large scale atomistic simulations. The high gain from the project will be quantitative high-fidelity predictions of radiation effects in semiconductors, to enable the optimal design of components for power devices, and the development of next generation electronics for demanding environments.
I will develop a genuinely predictive modelling scheme, using a combination of state-of-the-art first principles calculations, machine learning methods for modelling atomic interactions, and molecular dynamics simulations in multi-million atom systems, together with electron microscopy simulations and ion range calculations to obtain quantitative predictions of experimentally measurable radiation effects for different irradiating particles and energies. This methodology will form a truly bottom-up approach to the study of radiation damage in technologically relevant semiconductor materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.