Objective
Superconducting qubits have emerged as a leading platform for realizing intermediate- and large-scale quantum computing and quantum simulation. This success has been due to the exceedingly wide range of qubit encodings and rich physics attainable by combining superconducting circuit elements to achieve high coherence qubits and high fidelity quantum operations. In this project, I will demonstrate novel approaches to two central aspects of the future of superconducting quantum computing. 1) Despite the dramatic scaling in the number of qubits, the fundamental workhorse to implementing quantum algorithms and quantum error correction is still two-qubit interactions. 2) There has recently been a large interest in novel so-called 'protected qubit encodings' for high coherence, but none have yet been competitive with standard 'non-protected' qubits. The main results of NovaDePro will be -Implementation of a novel qubit-qubit coupling mechanism enabling fast microwave-activated multi-qubit gates. -Demonstration of the first single-shot high-fidelity four-qubit gate and parity readout, enabled by the new coupling technique, in a surface code quantum error correction layout. -A new approach to hybrid superconductor/semiconductor Josephson junctions with high stability (as demonstrated in our recent experiments) and coherence properties compatible with state-of-the-art superconducting qubits. -The first demonstration of superconducting circuits that combine standard insulator-based and hybrid superconductor/semiconductor-based Josephson junctions to implement new high-coherence protected qubit encodings and straightforward quantum control schemes. These achievements will push the boundaries of superconducting quantum computing by opening a new path for high-fidelity error correction in intermediate- and large-scale quantum computing and demonstrate a new family of high coherence protected qubits in a first-of-its-kind hybrid quantum circuit.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.