Ziel
Superconducting qubits have emerged as a leading platform for realizing intermediate- and large-scale quantum computing and quantum simulation. This success has been due to the exceedingly wide range of qubit encodings and rich physics attainable by combining superconducting circuit elements to achieve high coherence qubits and high fidelity quantum operations. In this project, I will demonstrate novel approaches to two central aspects of the future of superconducting quantum computing. 1) Despite the dramatic scaling in the number of qubits, the fundamental workhorse to implementing quantum algorithms and quantum error correction is still two-qubit interactions. 2) There has recently been a large interest in novel so-called 'protected qubit encodings' for high coherence, but none have yet been competitive with standard 'non-protected' qubits. The main results of NovaDePro will be -Implementation of a novel qubit-qubit coupling mechanism enabling fast microwave-activated multi-qubit gates. -Demonstration of the first single-shot high-fidelity four-qubit gate and parity readout, enabled by the new coupling technique, in a surface code quantum error correction layout. -A new approach to hybrid superconductor/semiconductor Josephson junctions with high stability (as demonstrated in our recent experiments) and coherence properties compatible with state-of-the-art superconducting qubits. -The first demonstration of superconducting circuits that combine standard insulator-based and hybrid superconductor/semiconductor-based Josephson junctions to implement new high-coherence protected qubit encodings and straightforward quantum control schemes. These achievements will push the boundaries of superconducting quantum computing by opening a new path for high-fidelity error correction in intermediate- and large-scale quantum computing and demonstrate a new family of high coherence protected qubits in a first-of-its-kind hybrid quantum circuit.
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
Schlüsselbegriffe
Programm/Programme
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thema/Themen
Finanzierungsplan
ERC - Support for frontier research (ERC)Gastgebende Einrichtung
1165 Kobenhavn
Dänemark