Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Optimizing for Generalization in Machine Learning

Description du projet

Une nouvelle façon de développer des systèmes d’apprentissage statistique

Les algorithmes d’apprentissage statistique, le traitement du langage naturel et l’IA conversationnelle sont tous devenus une réalité grâce aux avancées dans le domaine de l’apprentissage automatique. Cependant, la question de la généralisation reste l’un des plus grands mystères non résolus de l’informatique moderne: pourquoi ces règles de prédiction immensément complexes s’appliquent-elles avec succès à des cas futurs non observés? Pour répondre à cette question, le projet OPTGEN financé par le CER se concentrera sur l’apprentissage statistique et l’apprentissage par renforcement, ainsi que sur les algorithmes d’optimisation standard contemporains de facto pour l’entraînement des modèles d’apprentissage. La méthodologie OPTGEN met en évidence les lacunes inhérentes aux points de vue largement acceptés de la théorie de la généralisation des algorithmes d’apprentissage basés sur l’optimisation. Le projet devrait transformer notre façon de voir et de développer des systèmes d’apprentissage pratiques, efficaces et fiables.

Objectif

Recent advances in the field of machine learning (ML) are revolutionizing an ever-growing variety of domains, ranging from statistical learning algorithms in computer vision and natural language processing all the way to reinforcement learning algorithms in autonomous driving and conversational AI. However, many of these breakthroughs demonstrate phenomena that lack explanations, and sometimes even contradict conventional wisdom. Perhaps the greatest mystery of modern ML---and arguably, one of the greatest mysteries of all of modern computer science---is the question of generalization: why do these immensely complex prediction rules successfully apply to future unseen instances? Apart from the pure scientific curiosity it stimulates, I believe that this lack of understanding poses a significant obstacle to widening the applicability of ML to critical applications, like in healthcare or autonomous driving, where the cost of error is disastrous. The broad goal of this project is to tackle the generalization mystery in the context of both statistical learning and reinforcement learning, focusing on optimization algorithms being the de facto contemporary standard in training learning models. Our methodology points out to inherent shortcomings of widely accepted viewpoints with regard to generalization of optimization-based learning algorithms, and takes a crucially different approach that targets the optimization algorithm itself; building bottom-up from fundamental and tractable optimization models, we identify intrinsic properties and develop algorithmic methodologies that enable optimization to effectively generalize in modern statistical- and reinforcement-learning scenarios. A successful outcome would not only lead to a timely and crucial shift in the way the research community approaches generalization of contemporary optimization-based ML, but it may also significantly transform the way we develop practical, efficient and reliable learning systems.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2022-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

TEL AVIV UNIVERSITY
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 494 375,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 494 375,00

Bénéficiaires (1)

Mon livret 0 0