European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Interface between Membraneless Organelles and Membranes

Descripción del proyecto

Desvelar la interacción de los condensados biomoleculares con los orgánulos

Las células contienen estructuras dinámicas conocidas como condensados biomoleculares que se forman mediante la separación de fases líquido-líquido de las moléculas. Estos condensados surgen del ensamblaje de diversas biomoléculas —como proteínas, ácidos nucleicos y, en ocasiones, lípidos— y, a diferencia de los orgánulos tradicionales unidos a membranas, carecen de una membrana circundante. El equipo del proyecto MEMLESSINTERFACE, financiado por el Consejo Europeo de Investigación, pretende investigar la interacción entre condensados biomoleculares y orgánulos de membrana en neuronas. El trabajo se centrará en los condensados biomoleculares que se forman en las sinapsis, su regulación y su interacción con las mitocondrias y el retículo endoplásmico para mediar en la función neuronal.

Objetivo

Liquid-liquid phase separation is a major mechanism for organizing macromolecules, particularly proteins with intrinsically disordered regions, in compartments not limited by a membrane. Many such compartments (also known as biomolecular condensates) have been described, and it is currently agreed that they take over several cellular functions. To do so, they need to interact with other compartments, just as the membrane-bound organelles interact with each other through well-defined contact sites. However, at present no concept exists explaining how membrane-less and membrane-bound organelles interact.

I propose here to address this question by determining the molecular mechanisms and functional impact of the interactions between liquid phases and membranes. I hypothesize that a novel type of contact sites between membrane-less organelles and membranes, which I termed dipping contacts, is critical for coupling of diffusion and material properties of condensates to biochemical processes occurring in the membrane-bound compartments.

To test this, I will capitalize on a prominent biomolecular condensate that I characterized a few years ago, and which has already been used widely in the literature: the synaptic vesicle (SV) condensate, which clusters SVs together with proteins such as synapsins and synucleins. For this, I have already developed advanced reconstitution tools, single-molecule tracking and genetic code expansion in living neurons, which will enable me to determine: i) how the material properties of SV condensates are regulated, ii) how they recruit specific organelles, while rejecting others, iii) the proteins that mediate signaling and interactions of SV condensates with mitochondria and the ER.

Overall, this project will lead to an understanding of the interface between condensates and classical organelles, which is extremely relevant in the context of aggregation-related diseases where faulty inclusions of membranes and proteins play a leading role.

Régimen de financiación

HORIZON-ERC - HORIZON ERC Grants

Institución de acogida

DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV
Aportación neta de la UEn
€ 1 499 648,75
Dirección
VENUSBERG-CAMPUS 1/99
53127 Bonn
Alemania

Ver en el mapa

Región
Nordrhein-Westfalen Köln Bonn, Kreisfreie Stadt
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 1 499 648,75

Beneficiarios (1)