Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Exploring nonclassical states of center-of-mass mechanical motion with superconducting magneto- and levitomechanics

Objective

SuperMeQ addresses three basic science goals in quantum technologies, targeting to gain new insights into quantum control over the center-of-mass motion of mechanical resonators: (i) We will push to the limits of decoherence mechanisms of massive objects, (ii) we will maximize the vacuum coupling of the center-of-mass motion of a mechanical resonator to a quantum system, and (iii) we will generate useful nonclassical states such as squeezed states or states with a negative Wigner function, which have direct relevance for quantum-enhanced force and inertial sensing. Our project follows a unique approach by realizing two complementary experimental platforms that are tailored to our goals and that are mutually beneficial through parallel development: (a) magnetically levitated superconducting microparticles that access a mass regime spanning more than seven orders of magnitude between picogram and sub-milligram masses, and that are expected to exhibit ultra-low mechanical decoherence, and (b) integrated clamped magnetic or superconducting mechanical resonators that are expected to reach strong vacuum coupling rates, two orders of magnitude larger than the state-of-the-art. Key in each of these approaches is that we will couple both types of mechanical resonator inductively to superconducting quantum circuits, which allow for full quantum control over the center-of-mass degree of freedom of the mechanical resonators. Our project results will lead to a breakthrough in the development and growth of novel quantum sensing technologies and give new insights into foundational aspects of quantum physics.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL4-2021-DIGITAL-EMERGING-02

See all projects funded under this call

Coordinator

CHALMERS TEKNISKA HOGSKOLA AB
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 738 889,00
Address
-
412 96 Goteborg
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 738 889,00

Participants (4)

My booklet 0 0