Project description
Innovative machine learning approach for medical imaging
Medical imaging provides an unmatched ability to identify disease with high accuracy, driving strong demand for imaging with automated diagnostic support for healthcare professionals and caregivers. Machine learning is expected to provide an algorithmic solution for diagnostic automation. However, machines should be able to analyse new images according to knowledge about healthy anatomy and expected physiological variability. The ERC-funded MIA-NORMAL project will develop normative representation learning as a novel deep-learning approach for medical imaging, providing patient-specific computational tools for confirmation of normality, image quality control, health screening, and disease prevention. The resulting models will obtain clinically useful information from healthy patient data as frequently as possible during patient journeys.
Objective
As one of the most important aspects of diagnosis, treatment planning, treatment delivery, and follow-up, medical imaging provides an unmatched ability to identify disease with high accuracy. As a result of its success, referrals for imaging examinations have increased significantly. However, medical imaging depends on interpretation by highly specialised clinical experts and is thus rarely available at the front-line-of-care, for patient triage, or for frequent follow-ups. Very often, excluding certain conditions or confirming physiological normality would be essential at many stages of the patient journey, to streamline referrals and relieve pressure on human experts who have limited capacity. Hence, there is a strong need for increased imaging with automated diagnostic support for clinicians, healthcare professionals, and caregivers.
Machine learning is expected to be an algorithmic panacea for diagnostic automation. However, despite significant advances such as Deep Learning with notable impact on real-world applications, robust confirmation of normality is still an unsolved problem, which cannot be addressed with established approaches.
Like clinical experts, machines should also be able to verify the absence of pathology by contrasting new images with their knowledge about healthy anatomy and expected physiological variability. Thus, the aim of this proposal is to develop normative representation learning as a new machine learning paradigm for medical imaging, providing patient-specific computational tools for robust confirmation of normality, image quality control, health screening, and prevention of disease before onset. We will do this by developing novel Deep Learning approaches that can learn without manual labels from healthy patient data only, applicable to cross-sectional, sequential, and multi-modal data. Resulting models will be able to extract clinically useful and actionable information as early and frequent as possible during patient journeys.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine anatomy and morphology
- social sciences sociology industrial relations automation
- medical and health sciences basic medicine pathology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
91058 ERLANGEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.