Description du projet
Une approche innovante de l’apprentissage automatique pour l’imagerie médicale
L’imagerie médicale dispose d’une capacité inégalée à identifier les maladies avec une grande précision, ce qui suscite une forte demande d’imagerie avec aide au diagnostic automatisé pour les professionnels de la santé et les soignants. L’apprentissage automatique devrait fournir une solution algorithmique pour l’automatisation des diagnostics. Cependant, les machines doivent pouvoir analyser les nouvelles images en fonction des connaissances sur l’anatomie saine et la variabilité physiologique attendue. Le projet MIA-NORMAL, financé par le CER, développera l’apprentissage par représentation normative en tant que nouvelle approche d’apprentissage profond pour l’imagerie médicale, fournissant des outils informatiques spécifiques aux patients pour la confirmation de la normalité, le contrôle de la qualité des images, le dépistage sanitaire et la prévention des maladies. Les modèles qui en résulteront recueilleront des informations cliniquement utiles à partir des données de patients sains, aussi souvent que possible au cours du parcours du patient.
Objectif
As one of the most important aspects of diagnosis, treatment planning, treatment delivery, and follow-up, medical imaging provides an unmatched ability to identify disease with high accuracy. As a result of its success, referrals for imaging examinations have increased significantly. However, medical imaging depends on interpretation by highly specialised clinical experts and is thus rarely available at the front-line-of-care, for patient triage, or for frequent follow-ups. Very often, excluding certain conditions or confirming physiological normality would be essential at many stages of the patient journey, to streamline referrals and relieve pressure on human experts who have limited capacity. Hence, there is a strong need for increased imaging with automated diagnostic support for clinicians, healthcare professionals, and caregivers.
Machine learning is expected to be an algorithmic panacea for diagnostic automation. However, despite significant advances such as Deep Learning with notable impact on real-world applications, robust confirmation of normality is still an unsolved problem, which cannot be addressed with established approaches.
Like clinical experts, machines should also be able to verify the absence of pathology by contrasting new images with their knowledge about healthy anatomy and expected physiological variability. Thus, the aim of this proposal is to develop normative representation learning as a new machine learning paradigm for medical imaging, providing patient-specific computational tools for robust confirmation of normality, image quality control, health screening, and prevention of disease before onset. We will do this by developing novel Deep Learning approaches that can learn without manual labels from healthy patient data only, applicable to cross-sectional, sequential, and multi-modal data. Resulting models will be able to extract clinically useful and actionable information as early and frequent as possible during patient journeys.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences médicales et de la santé médecine fondamentale anatomie et morphologie
- sciences sociales sociologie relations industrielles automatisation
- sciences médicales et de la santé médecine fondamentale pathologie
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2022-COG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
91058 ERLANGEN
Allemagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.