European Commission logo
English English
CORDIS - EU research results
CORDIS

Advanced HYBRID solar plant with PCM storage solutions in sCO2 cycles.

Project description

Creating low-impact concentrated solar energy

Adding renewable energy sources helps fight climate change and reducing the cost and improving the efficiency of solar power is one way to do this. The EU-funded HYBRIDplus project will pioneer the next generation of concentrated solar power systems, providing greater energy storage capacity and increased dispatchability with lower environmental impacts. Utilising phase change material technology and integrating recycled metal wool, researchers will convert concentrated solar energy into stored thermal energy utilising a new high-temperature supercritical CO2 cycle, providing abundant energy ready for use. This ground-breaking approach will provide high volume, efficient and accessible energy without environmental drawbacks.

Objective

HYBRIDplus:Advanced HYBRID solar plant with PCM storage solutions in sCO2 cycles. HYBRIDplus aims to pioneer the next generation of CSP with an advanced innovative high-density and high-temperature thermal energy storage (TES) system capable of providing a high degree of dispatchability at low cost and with much lower environmental burden than the State of the Art. This thermal storage is based in the Phase Change Material (PCM) technology in a cascade configuration that can reproduce the effect of a thermocline and integrates recycled metal wool in its nucleus that provide hybridization possibilities by acting as an electric heater transforming non-dispatchable renewable electricity such as PV into thermal stored energy ready to be dispatched when needed. HYBRIDplus proposes a novel approach to concentrated solar power with a PV+Cascade PCM-TES CSP configuration based on a high temperature supercritical CO2 cycle working at 600 ºC. This new plant is called to form the backbone of the coming energy system thanks to a higher efficiency and lower LCoE than state-of-the-art technology, and in addition to other benefits such as full dispatchability reached with the hybridization in the storage that allow higher shares of variable output renewables in the energy system and environmental friendliness (lower CO2 emissions, minimum water consumption, enhancement life cycle impact).

Coordinator

UNIVERSIDAD DE SEVILLA
Net EU contribution
€ 1 007 371,25
Address
CALLE S. FERNANDO 4
41004 Sevilla
Spain

See on map

Region
Sur Andalucía Sevilla
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 1 007 371,25

Participants (7)