Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Exploring the molecular grammar of IDP assembly and condensation at ultra-high throughput

Project description

Unravelling the mysteries of intrinsically disordered proteins

Intrinsically disordered proteins (IDPs) lack a stable, well-defined three-dimensional structure and adopt multiple conformations, often with a high degree of flexibility. IDPs also perform a range of important biological functions, such as signalling, transcription and cell division. Despite their significance, IDPs have long been considered a mystery in the field of protein science. Funded by the European Research Council, the EMMA project aims to unravel this mystery. Using advanced experimental biophysics, machine learning algorithms and molecular simulations, EMMA seeks a quantitative understanding of how the structure and interactions of IDPs are defined by their amino acid sequence. It will develop a novel experimental strategy that will allow studying the behavior of millions of amino acid sequences simultaneously.

Objective

The last years have seen unprecedented breakthroughs in protein structural biology, with the resolution revolution in cryo-electron microscopy and the release of AlphaFold. The combination of advanced experimental structural biology, machine learning algorithms and molecular simulations has put the fully quantitative description of how the structure and interactions of folded proteins are defined by their amino acid sequence within close reach.
This leaves us with a final frontier in protein science, namely to achieve a similar level of understanding for intrinsically disordered proteins (IDPs). The energy landscapes of IDPs often comprise a multitude of nearly isoenergetic states, that include assembled forms, such as amyloid fibrils and liquid condensate droplets.
Much effort has been spent in order to achieve an understanding of the molecular grammar of IDP assembly and condensation, i.e. how amino acid sequence defines both kinetics and thermodynamics of these processes. Current state of the art is to evaluate a few dozens of sequence perturbations quantitatively in vitro.
In EMMA, I propose to develop a fundamentally new approach that will ultimately allow to improve on current methods by more than 8 orders of magnitude. This ground-breaking improvement will be achieved by exploiting the power of mRNA display, in which the biophysical behavior of each individual sequence within large libraries of protein-mRNA constructs can be evaluated in a “one pot” reaction. We will combine quantitative screening of the energetics of liquid condensate droplet formation of up to 10^10 sequences by mRNA display with a multiparametric biophysical toolbox that allows the key thermodynamic and kinetic parameters of binding and assembly to be evaluated for thousands of selected sequence variants.
EMMA will transform our ability to probe the mechanisms and interrelationships of the interactions and assembly processes that define IDP function and disease-related malfunction.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-COG

See all projects funded under this call

Host institution

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 995 554,00
Address
ANKER ENGELUNDS VEJ 101
2800 KONGENS LYNGBY
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 995 554,00

Beneficiaries (1)

My booklet 0 0