Project description
AI tools for personalised cancer therapies
Machine learning can accelerate personalised medicine, demonstrating superior accuracy and speed compared to humans in diagnosis, outcome prediction and treatment recommendations. However, ensuring the trustworthiness of a model’s predictions throughout its life cycle is crucial. The EU-funded TAIPO project is dedicated to developing trustworthy AI tools for personalised oncology. This entails creating reliable algorithms for diagnosing and stratifying cancer patients, as well as establishing a framework for transparent modelling of personalised outcomes. The project enhances the reliability of AI models for three clinical applications: skin lesion classification, personalised outcome modelling for acute myeloid leukaemia, and therapy recommendations for metastatic breast cancer. TAIPO’s results are expected to advance trustworthy machine learning in the field of medicine.
Objective
Modern machine learning algorithms have the potential to accelerate personalized medicine in a fast pace. To date, first tasks in medicine are being addressed with machine learning algorithms that surpass humans in terms of accuracy and speed, including diagnosis, outcome prediction and treatment recommendation. However, for a widespread adoption in clinical practice, a good performance in terms of speed and accuracy is not sufficient: practitioners also need to be able to trust a models prediction in all stages of its life cycle.
I will facilitate an efficient interaction of clinicians with AI models by developing trustworthy AI tools for personalized oncology: First, I will develop trustworthy AI tools and algorithms for diagnosis and stratification of cancer patients. Second, I will establish a framework for reliable and transparent modelling of personalized outcomes and therapy decisions in oncology.
TAIPO will result in novel algorithms and software tools for quantifying and improving the trustworthiness of AI models that I will apply to three clinical applications: (i) trustworthy AI-based skin lesion classification based on dermoscopic images, (ii) stratification and personalized outcome modelling for patients with acute myeloid leukaemia (AML) based on omics data, and (iv) therapy recommendation for metastatic breast cancer patients based on electronic health records.
TAIPO will increase the throughput of trustworthy diagnoses of skin lesions and pave the way for low-cost access to diagnostic care. It will empower clinicians to make personalized and reliable therapy decisions, which we will demonstrate at the example of AML and metastatic breast cancer. Our novel algorithms to evaluate and improve the reliability of AI models are a crucial contribution to close the gap between in-silico AI-bench and bedside and will further push the field of trustworthy machine learning with many applications of AI in medicine.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- medical and health sciences clinical medicine oncology leukemia
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69120 Heidelberg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.