Project description
Innovative medical imaging system for highly sensitive ultrasound
The EU-funded MED-IPUT project aims to develop a high-resolution, high-quality, recyclable medical imaging system based on an integrated photonic ultrasound transducer concept. The new system is expected to be 100 times more sensitive in comparison to conventional ultrasound (US). The innovative sensing will combine optical waveguides and micromechanical membranes with optical read-out techniques for medical ultrasound and photoacoustics (PA). The technological development will utilise easily accessible materials and integrate them into US transducer arrays for medical imaging and PA for validation and demonstration on phantoms instead of tissue. The objective is to develop, manufacture, integrate and package the novel sensing systems into transducers, covering the full manufacturing process.
Objective
The multi-sensing 'Medical Integrated Photonic Ultrasound Transducer' (MED-IPUT) project will develop a high-resolution, high-quality, recyclable medical imaging system based on a disruptive integrated photonic ultrasound transducer concept. We envisioned a 100x increase in sensitivity compared to conventional US.
The IPUT-based sensing system, combines optical waveguides and micromechanical membranes with two optical read-out techniques (RR and MZI) to at least two US applications; medical ultrasound (US) and photoacoustics (PA). We will solve technical challenges such as increasing sensitivity, mass parallelization by optical multiplexing and hybrid integration of microelectronics in PIC, tuneable waveguides, fiber chip coupling manufacturability and packaging. These advances will lead to a higher production yield and increased insight in the processing solutions of hybrid integrated photonics. The IPUTs are based on easily accessible materials, don’t require lead to improve the performance and laser power can be reduced significantly.
We will iteratively develop an effective SOI and SiN manufacturing process to realize very sensitive IPUT sensors and integrate them into US transducer arrays for medical imaging and PA for validation and demonstration on phantoms instead of tissue.
The partners have the in-house capability to develop, manufacture, integrate and package the novel IPUT-based sensing systems into transducers, covering the full manufacturing value chain.
The increase in sensitivity will enable:
1. An increase of the US image by a factor 2.
2. An increase of the penetration depth by a factor 2.
3. A 100x reduction of the peak pressures.
4. A 100x reduction of the required laser power for PA resulting in the use of low-cost lasers.
MED-IPUT reinforces European industrial leadership in high-performance multi-sensing system development and manufacturing, particularly in the healthcare sector.
Fields of science
- engineering and technologymechanical engineeringmanufacturing engineering
- engineering and technologymaterials engineeringfibers
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- engineering and technologymedical engineeringdiagnostic imaging
- natural sciencesphysical sciencesacousticsultrasound
Programme(s)
Funding Scheme
HORIZON-RIA - HORIZON Research and Innovation ActionsCoordinator
2595 DA Den Haag
Netherlands