Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Privacy compliant health data as a service for AI development

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

PHASE IV AI Initial Architecture (se abrirá en una nueva ventana)

A description of the initial technical architecture.

Study initiation package – UC1-UC3 (se abrirá en una nueva ventana)

A compiled version of the mandatory deliverable for the retrospective, registry-based studies in PHASE IV AI.

User stories, usage scenarios and use case validation v2 (se abrirá en una nueva ventana)

User perspectives on PHASE IV AI use cases.

Dissemination, Communication and Exploitation Activities v1 (se abrirá en una nueva ventana)

Report on the project's dissemination, communication and exploitation activities.

User stories, usage scenarios and use case validation v1 (se abrirá en una nueva ventana)

User perspectives on PHASE IV AI use cases.

Legal and ethical framework and requirements v1 (se abrirá en una nueva ventana)

An overview of legal and ethical requirements for the PHASE IV AI technologies.

Dissemination, Communication and Exploitation Plan (se abrirá en una nueva ventana)

PHASE IV AI Dissemination, Communication and Exploitation Plan. Some sections of the exploitation plan could be considered sensitive (SEN).

PHASE IV AI Initial Technology Assessment and List (se abrirá en una nueva ventana)

A document reflecting the developed PHASE IV AI technologies to the original requirements and specifications.

Security and Privacy measures (se abrirá en una nueva ventana)

Description of the PHASE IV AI approaches to security anf privacy (technical measures).

Data Specifications (se abrirá en una nueva ventana)

Data Specifications based on the selected use cases.

Guideline on EHDS Alignment v1 (se abrirá en una nueva ventana)

Guidelines for aligning the PHASE IV AI technologies with the EHDS developments.

Data Harmonization for DaaS, MaaS and Specifications plan (se abrirá en una nueva ventana)

The deliverable will identify the heterogeneities of the data arising from the different medical imaging and labelling expert that exists in the data of the same data owner and the heterogeneities among different data owners arising from different EMRs, language and logging process etc. Following this, it will setup the roadmap for the documentation of both processes (OMOP CDM, semantic mismatches, metadata of demographic characteristics) indicating the right harmonisation tools and methodologies to prepare the data in a common and standardized data model within the health data hub.

Project Handbook, Quality Plan & Risk Management (se abrirá en una nueva ventana)

The project handbook prepared by the coordinator will guide the project's implementation.

Technologies for de-identification and synthetic data generation v1 (se abrirá en una nueva ventana)

Algorithms for advanced anonymization and synthetic data generation. Lead beneficiaries UTU (de-identification) and EUT (synthetic data generation).

DaaS Toolbox v1 (se abrirá en una nueva ventana)

ML algorithms for Data as a Service concept.Type: R+OTHER

Secure Multiparty Computation v1 (se abrirá en una nueva ventana)

Improved methods for secure multi-party computation.Type: R+OTHER

Data Hub Design and Data Market v1 (se abrirá en una nueva ventana)

Description of the PHASE IV AI Data Hub and Data Market.Type: R+OTHER

MaaS Toolbox v1 (se abrirá en una nueva ventana)

ML algorithms for Model as a Service concept.Type: R + OTHER

Integrated Data Services v1 (se abrirá en una nueva ventana)

Integration of PHASE IV AI Data ServicesType: R+OTHER

Publicaciones

VisTAD: A Vision Transformer Pipeline for the Classification of Alzheimer’s Disease (se abrirá en una nueva ventana)

Autores: Noushath Shaffi, Vimbi Viswan, Mufti Mahmud
Publicado en: 2024 International Joint Conference on Neural Networks (IJCNN), 2024
Editor: IEEE
DOI: 10.1109/IJCNN60899.2024.10650975

Understanding Feature Importance of Prediction Models Based on Lung Cancer Primary Care Data (se abrirá en una nueva ventana)

Autores: Teena Rai, Yuan Shen, Jun He, Mufti Mahmud, David J Brown, Jaspreet Kaur, Emma O’Dowd, David R Baldwin, Richard Hubbard
Publicado en: 2024 International Joint Conference on Neural Networks (IJCNN), 2024
Editor: IEEE
DOI: 10.1109/IJCNN60899.2024.10650819

Characterization of Synthetic Lung Nodules in Conditional Latent Diffusion of Chest CT Scans (se abrirá en una nueva ventana)

Autores: Roger Marí Molas, Paula Subías-Beltrán, Carla Pitarch Abaigar, Mar Galofré Cardo, Rafael Redondo Tejedor
Publicado en: Frontiers in Artificial Intelligence and Applications, Artificial Intelligence Research and Development, 2024
Editor: IOS Press
DOI: 10.3233/FAIA240408

Does Differentially Private Synthetic Data Lead to Synthetic Discoveries? (se abrirá en una nueva ventana)

Autores: Ileana Montoya Perez, Parisa Movahedi, Valtteri Nieminen, Antti Airola, Tapio Pahikkala
Publicado en: Methods of Information in Medicine, Edición 63, 2024, ISSN 0026-1270
Editor: Georg Thieme Verlag KG
DOI: 10.1055/a-2385-1355

Cognitive Computation (se abrirá en una nueva ventana)

Autores: Md. Easin Arafat; Md. Wakil Ahmad; S. M. Shovan; Towhid Ul Haq; Nazrul Islam; Mufti Mahmud; M. Shamim Kaiser
Publicado en: Accurate Prediction of Lysine Methylation Sites Using Evolutionary and Structural-Based Information, 2024, ISSN 1866-9956
Editor: Springer Nature
DOI: 10.1007/S12559-024-10268-2

Ensemble of vision transformer architectures for efficient Alzheimer’s Disease classification (se abrirá en una nueva ventana)

Autores: Noushath Shaffi; Vimbi Viswan; Mufti Mahmud
Publicado en: Brain Informatics, 2024, ISSN 2198-4018
Editor: Springer Open
DOI: 10.1186/S40708-024-00238-7

Towards practical federated learning and evaluation for medical prediction models (se abrirá en una nueva ventana)

Autores: Andrei Kazlouski, Ileana Montoya Perez, Faiza Noor, Mikael Högerman, Otto Ettala, Tapio Pahikkala, Antti Airola
Publicado en: International Journal of Medical Informatics, Edición 204, 2025, ISSN 1386-5056
Editor: Elsevier BV
DOI: 10.1016/J.IJMEDINF.2025.106046

Interpreting artificial intelligence models: a systematic review on the application of LIME and SHAP in Alzheimer’s disease detection (se abrirá en una nueva ventana)

Autores: Viswan Vimbi; Noushath Shaffi; Mufti Mahmud
Publicado en: Brain Informatics, 2024, ISSN 2198-4026
Editor: Springer Nature
DOI: 10.1186/s40708-024-00222-1

Benchmarking Evaluation Protocols for Classifiers Trained on Differentially Private Synthetic Data (se abrirá en una nueva ventana)

Autores: Parisa Movahedi, Valtteri Nieminen, Ileana Montoya Perez, Hiba Daafane, Dishant Sukhwal, Tapio Pahikkala, Antti Airola
Publicado en: IEEE Access, Edición 12, 2024, ISSN 2169-3536
Editor: Institute of Electrical and Electronics Engineers (IEEE)
DOI: 10.1109/ACCESS.2024.3446913

Medical AI in the EU: Regulatory Considerations and Future Outlook (se abrirá en una nueva ventana)

Autores: Ranttila, Pertti; Sahebi, Golnaz; Kontio, Elina; Salmi, Jussi
Publicado en: AI - Ethical and Legal Challenges [Working Title], 2024, ISBN 978-0-85466-497-9
Editor: IntechOpen
DOI: 10.5772/INTECHOPEN.1007443

Medical AI in the EU: Regulatory Considerations and Future Outlook (se abrirá en una nueva ventana)

Autores: Pertti Ranttila, Golnaz Sahebi, Elina Kontio, Jussi Salmi
Publicado en: AI - Ethical and Legal Challenges [Working Title], 2024
Editor: IntechOpen
DOI: 10.5772/intechopen.1007443

Response to Letter by Dehaene et al. on Synthetic Discovery is not only a Problem of Differentially Private Synthetic Data (se abrirá en una nueva ventana)

Autores: Ileana Montoya Perez, Parisa Movahedi, Valtteri Nieminen, Antti Airola, Tapio Pahikkala
Publicado en: Methods of Information in Medicine, 2025
Editor: Georg Thieme Verlag
DOI: 10.1055/A-2540-8346

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0