Objective
Many physics models are described by waves or more generally dispersive equations (Schrdinger equations) with propagation in a non homogeneous and bounded medium. Toy models (mostly in flat backgrounds) have been developed by mathematicians. However, many questions remain open even on these simplified models in the presence of inhomogeneities and boundaries. In particular, the works of mathematicians in the last decade have allowed to exhibit some pathological behaviours which appear to be quite unstable.
A first point in this proposal will be to expand the understanding of the influence of the geometry (inhomogeneities of the media, boundaries) on the behaviour of solutions to dispersive PDEs.
When these behaviours appear to be unstable, a natural question is whether they are actually rare. The last years have seen the emergence of a new point of view on these questions: random data Cauchy theories.
The idea behind is that for random initial data, the solutions behaviours are better than expected (deterministically). The second point of this project is precisely to go further in this direction. After identifying these pathological behaviours, is it possible to show that for almost all initial data, almost all geometries, they do not happen?
Understanding how to combine the powerful techniques from micro-local and harmonic analysis with a probabilistic approach in this context should allow a much better understanding of these physically relevant models.
Summarising, the purpose of my project is to develop tools and give answers to the following questions in the context of dispersive PDEs (and to some extent fluids mechanics)
Can we understand the influence of the geometric background (and boundaries) on concentration properties and the the behaviour of solutions to dispersive evolution PDEs?
Can we define generic behaviours for solutions to waves and fluids PDE's ? Can we show that some very pathological behaviours (which do happen) are actually very rare?
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
91190 GIF-SUR-YVETTE
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.