Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Nanostructure-Based Design of Visual Perception using High-Index Disordered Metasurface Physics

Objective

The optics of disordered media with subwavelength high-contrast resonant inhomogeneities is a fascinating research topic emerging at the interface between the physics of waves in complex media and nanophotonics. UNSEEN explores and exploits unconventional wave-interference phenomena in disordered metasurfaces towards a new application: the creation of brand-new visual appearance.
Our perception of objects is completely determined by how they scatter light. Color is crucial, but other attributes, such as texture, gloss for reflective surfaces, clarity for transmissive ones, illumination directivity also largely influence appearance. Although this perception plays a key role in virtually all fine and applied arts, appearance engineering has been so far applied only to materials structured at length scales significantly larger than the wavelength; this is because the link between nanostructure morphologies and appearance is very complicated for subwavelength scale resonant inhomogeneities.
UNSEEN bridges, for the first time, the fertile environments of optical metasurfaces and visual appearance in an original and cross-disciplinary way. At the forefront of optical modelling and characterization, we will develop new tools in nanophotonics, which will merge nanoscale electromagnetism, mesoscale multiple scattering, and macroscale ray-tracing rendering. The tools will allow us to understand the complicated relation between morphology and appearance, to harness the manifold degrees of freedom offered by disordered metasurfaces and to discover clues to design novel appearance. We will then use available state-of-the-art nanofabrication and develop new characterization setups to produce and observe metasurfaces with novel appearances, and further study their most promising applications: luxury goods, document security, and head-up display.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-ADG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 108 656,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 108 656,00

Beneficiaries (1)

My booklet 0 0