Project description
Merging space innovation with terrestrial health research
In the realm of biofabrication, the challenges of replicating complex tissues persist on Earth. Microgravity, however, offers a solution, allowing bioprinting with more fluidic channels and intricate geometries. With this in mind, the EIC-funded PULSE project aims to leverage space conditions for revolutionary advancements in biobioprinting technology and ageing research. PULSE aims to revolutionise bioprinting with a novel scaffold-free, label-free, and nozzle-free technology based on multiple levitation principles. The project leverages microgravity conditions to accelerate ageing studies on Earth, using 3D bioprinted cardiac models as a proof of concept. These models promise to mimic cardiac physiology, providing invaluable insights into ageing and enabling the testing of potential anti-ageing drugs, merging space innovation with terrestrial health research.
Objective
Bioprinting in Space is one of the novel promising and perspective research directions in the rapidly emerging field of biofabrication. There are several advantages of bioprinting in Space. First, under the conditions of microgravity, it is possible to bioprint constructs employing more fluidic channels and, thus, more biocompatible bio-inks. Second, microgravity conditions enable 3D bioprinting of tissue and organ constructs of more complex geometries with voids, cavities, and tunnels. Third, a novel scaffold-free, label-free, and nozzle-free technology based on multi-levitation principles can be implemented under the condition of microgravity. The ideal Space bioprinters must be safe, automated, compact, and user friendly. Thus, there are no doubts that systematic exploration of 3D bioprinting in Space will advance biofabrication and bioprinting technology per se. Vice versa 3D bioprinted tissues could be used to study pathophysiological biological phenomena when exposed to microgravity and cosmic radiation that will be useful on Earth to understand ageing conditioning of tissues, and in space for the crew of deep space manned missions. In PULSE, we aim at developing a radical new bioprinting technology based on multiple levitation principles and to use Space as an accelerator of ageing on Earth. As a proof of concept study, we will use this newly developed bioprinting technology to create cardiac 3D in vitro models able to better mimic cardiac physiology compared to organoids. We will use such models to study cardiac ageing and test the efficacy of antiinflammatory/ anti-oxidative drugs with anti-ageing potential.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine physiology
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2022-PATHFINDEROPEN-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6200 MD Maastricht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.