Descripción del proyecto
Pilas de zinc-aire fabricadas con materiales baratos y abundantes en tierra
Se prevé que la necesidad mundial de energía crezca más de un 25 % de aquí a 2040. El hidrógeno, una fuente de energía limpia producida por la división de moléculas de agua, es una solución prometedora para hacer frente al cambio climático. Para que funcione eficazmente, debe combinarse con fuentes de energía renovables y dispositivos de almacenamiento de energía, como las baterías de zinc-aire. Sin embargo, los electrocatalizadores utilizados en estas baterías se fabrican actualmente con materiales caros y poco comunes. El equipo del proyecto HYDROBAT, financiado por las acciones Marie Skłodowska-Curie, pretende desarrollar materiales híbridos basados en metales terrígenos derivados del boruro y carbono altamente conductor. Los investigadores también estudiarán sus relaciones estructura-propiedades y comprenderán los mecanismos de degradación, que son cruciales para diseñar materiales con una estabilidad extraordinaria.
Objetivo
The world energy demand is expected to grow by more than 25% by 2040, according to the world energy outlook by the International Energy Agency. To tackle this significant and urgent challenge new materials with engineered properties for energy applications are required. Hydrogen (H2) production by water electrolysis (Green H2) has received great interest as an alternative sustainable and clean energy technology. For instance, the green H2 is very crucial for the European Commissions net zero emissions scenarios for 2050. To achieve green H2, this technology should be coupled with intermittent and renewable energy sources. And thus, the energy storage devices are involved in the green H2 production system. Due to its high energy density, and environmental-friendly, the Zinc-air battery is regarded as important energy storage device in the near future. But, the lack of satisfactory cheaper bifunctional electrocatalysts (ECs) for Hydrogen Evolution Reaction (HER) and oxygen evolution reaction (OER) for water electrolysis and the lack of bifunctional air ECs for oxygen reduction reaction (ORR) and OER are the main challenges for both these technologies. The state-of-the-art ECs are based on noble metals, whose application at a large scale is limited due to their high cost and scarcity. Consequently, the development of highly efficient ECs without precious metals is urgent. Current strategies for the development of desirable earth-abundant materials are often limited because of the poor electron transfer, low conductivity, poor stability, and small surface area of the active materials. To tackle this challenge, we aim (1) to develop hybrid materials based on earth-abundant metals derived from boride and highly conductive carbon by chemical reduction and pyrolysis methods, (2) to study their structure-property relationship, and finally, (3) to understand the degradation mechanism which is crucial for designing the materials with outstanding stability.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesciencias químicascatálisiselectrocatálisis
- ciencias naturalesciencias químicaselectroquímicaelectrólisis
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Régimen de financiación
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinador
35122 Padova
Italia