Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Robust Causal Discovery

Project description

Making causal discovery more reliable

The explosion of data in the past decade has fuelled advancements in fields like data science, statistics, and econometrics. While traditional methods have focused on finding patterns and associations, researchers now recognise the power of uncovering causal relationships for deeper insights. This shift has driven a surge in causal inference research. However, current methods assume that real-world data is clean and perfectly structured (an assumption often violated by measurement errors and anomalies). Supported by the Marie Skłodowska-Curie Actions programme, the ROCDISCO project aims to develop robust causal discovery methods that remain reliable despite data contamination. By building a theoretical framework, designing provably robust techniques, and testing real-world applications, the project will strengthen causal discovery and enhance scientific reliability.

Objective

RObust Causal DISCOvery

Due to technological advances, the available amount of data has increased tremendously over the last decade. The fields of data science, statistics, computer science and econometrics have followed this growth as they provide indispensable tools for translating data into insights and knowledge. Where data science was traditionally concerned with learning associations in data, it has recently become clear that causal relations often provide a deeper understanding and a stronger tool in many practical applications. This has led to the flourishing of causal inference with some of the most prestigious scientific awards going to pioneers in the field over the last decade.

“Can we learn causal mechanisms from observational data?” is one of the compelling questions that is occupying scientists all over the world. Where it was originally answered by skepticism, it has become clear that we are not completely powerless and there are indeed ways to infer causal structure from observational data under the right conditions. However, all of the current methods assume that the observed data perfectly follows the underlying causal structure. Unfortunately, real world data is often contaminated by anomalies and measurement errors, violating this assumption and thus weakening the reliability of methods for causal discovery.

This proposal aims to fill this gap by developing methods for causal discovery that remain efficient and reliable under data contamination. In particular, it (i) builds a theoretical framework for robust causal discovery, (ii) develops methods for causal discovery that are provably robust and correctly identify the causal structure and (iii) investigates the effect of contamination on real-world discovery tasks. As a result, in addition to advancing the theoretical understanding of causal discovery, this proposal builds a versatile toolbox to support scientists doing causal discovery and improve the reliability of their findings.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

UNIVERSITEIT MAASTRICHT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 203 464,32
Address
MINDERBROEDERSBERG 4
6200 MD Maastricht
Netherlands

See on map

Region
Zuid-Nederland Limburg (NL) Zuid-Limburg
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0