Descrizione del progetto
Rendere più affidabile la scoperta causale
L’esplosione dei dati nell’ultimo decennio ha alimentato i progressi in settori quali la scienza dei dati, la statistica e l’econometria. Mentre i metodi tradizionali si sono concentrati sulla ricerca di modelli e associazioni, i ricercatori riconoscono ora il potere di scoprire relazioni causali per ottenere informazioni più approfondite. Questo cambiamento ha determinato un’impennata nella ricerca sull’inferenza causale. I metodi attuali, tuttavia, presuppongono che i dati reali siano puliti e perfettamente strutturati (un presupposto spesso violato da errori di misurazione e anomalie). Il progetto ROCDISCO, sostenuto dal programma di azioni Marie Skłodowska-Curie, si propone di sviluppare metodi di scoperta causale robusti che rimangano affidabili nonostante la contaminazione dei dati. Attraverso la creazione di un quadro teorico, la progettazione di tecniche comprovatamente robuste e la sperimentazione di applicazioni nel mondo reale, il progetto rafforzerà la scoperta causale e migliorerà l’affidabilità scientifica.
Obiettivo
RObust Causal DISCOvery
Due to technological advances, the available amount of data has increased tremendously over the last decade. The fields of data science, statistics, computer science and econometrics have followed this growth as they provide indispensable tools for translating data into insights and knowledge. Where data science was traditionally concerned with learning associations in data, it has recently become clear that causal relations often provide a deeper understanding and a stronger tool in many practical applications. This has led to the flourishing of causal inference with some of the most prestigious scientific awards going to pioneers in the field over the last decade.
“Can we learn causal mechanisms from observational data?” is one of the compelling questions that is occupying scientists all over the world. Where it was originally answered by skepticism, it has become clear that we are not completely powerless and there are indeed ways to infer causal structure from observational data under the right conditions. However, all of the current methods assume that the observed data perfectly follows the underlying causal structure. Unfortunately, real world data is often contaminated by anomalies and measurement errors, violating this assumption and thus weakening the reliability of methods for causal discovery.
This proposal aims to fill this gap by developing methods for causal discovery that remain efficient and reliable under data contamination. In particular, it (i) builds a theoretical framework for robust causal discovery, (ii) develops methods for causal discovery that are provably robust and correctly identify the causal structure and (iii) investigates the effect of contamination on real-world discovery tasks. As a result, in addition to advancing the theoretical understanding of causal discovery, this proposal builds a versatile toolbox to support scientists doing causal discovery and improve the reliability of their findings.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) HORIZON-MSCA-2022-PF-01
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
6200 MD Maastricht
Paesi Bassi
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.