Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

DEVELOPMENT OF OPERANDO TECHNIQUES AND MULTISCALE MODELLING TO FACE THE ZERO-EXCESS SOLID-STATE BATTERY CHALLENGE

Project description

Advanced techniques for green batteries

The transition to a carbon-neutral future hinges on green, high-performing batteries. However, advancing these batteries requires a deep grasp of complex electro-chemo-mechanical processes, achievable only through cutting-edge experimental and computational methods. With this in mind, the EU-funded OPERA project addresses this need by bringing together seven research institutions, two synchrotron radiation facilities, and industry partners. OPERA focuses on zero-excess solid-state batteries, where in situ anode formation presents challenges. Using novel operando techniques at ESRF, ALBA, and DESY synchrotrons, the project provides detailed insights into stress fields, chemical composition, and degradation. This data, coupled with machine learning-enhanced multiscale modelling, aims to optimise battery performance and foster the EU’s technological advancement and independence.

Objective

Green, high-performing and safe batteries based on abundant materials are a key element in the transition to a carbon-neutral future. However, to accelerate their development, a deep understanding of the complex electro-chemo-mechanical processes within the battery is required, which is only accessible through advanced experimental and computational methods. Zero-excess solid-state batteries, where the anode is formed in situ, have emerged as a promising new generation of environmentally friendly batteries with high energy density, improved safety and higher cost-efficiency, but only after solutions for non-uniform anode formation were found.
In OPERA, seven leading research institutions, two synchrotron radiation facilities, a small-medium sized enterprise and a large technological company, all from complementary research fields such as batteries, surface and material science, and multiscale modelling, propose a unique strategy to face the current challenges of this technology. OPERA relies on the development of novel operando experimental techniques at the ESRF, ALBA and DESY synchrotrons and at the lab-scale, providing complementary information on multiaxial stress fields, chemical composition, nucleation and growth kinetics, structural defect formation and degradation of well-defined model cells with a resolution down to the atomic scale. The new insights and collected multiparameter data will be incorporated into a novel multiscale modelling approach supported by machine learning algorithms. This will ultimately lead to a conceptual understanding of the in-situ anode formation and, based on this, innovative improvement approaches to enable this type of energy storage technology, which will be an important step towards increasing the global competitiveness, resilience and independence of the EU.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL5-2022-D2-01

See all projects funded under this call

Coordinator

UNIVERSIDAD AUTONOMA DE MADRID
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 677 250,00
Address
CALLE EINSTEIN 3 CIUDAD UNIV CANTOBLANCO RECTORADO
28049 MADRID
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 677 250,00

Participants (10)

Partners (1)

My booklet 0 0