Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Dynamics of nano-electromechanical waveguides: A computational multi-physics framework

Objective

The remarkable electrical and mechanical properties of heterogeneous nano waveguides make it a promising material for nano-electromechanical devices such as resonators constructed by nanotube and graphene. The investigation of heterogeneous nano waveguides can advance the development of the existing energy and wave controlling systems, thereby contributing significantly to the exertion of device performance and the reduction of energy consumption. However, the integration of nano waveguides into functional architectures requires the development of advanced manufacturing approaches, which leads to a significant increase of research costs. Here, we present a novel perspective on dynamic analysis of heterogeneous nano-electromechanical waveguides through a computational multi-physics framework, which is based on the homogenization approach equipped with second strain gradient theory. This research project will extend the homogenization techniques used in simple waveguides to the heterogeneous nano waveguides and provide a way to considerably reduce the computational effort. On the other hand, this research project will give new insights on the size-dependent characteristics and enrich the explorations of dynamic properties for nano-electromechanical waveguides.
This project will be carried out by a talented and dedicated researcher who worked during his Ph.D. thesis on wave computational simulation method of heterogeneous nano waveguides through second strain gradient theory. The researcher will collaborate with a supervisor who has a very strong background in homogenization approach and in correspondences between second strain gradient theory and programming languages. Working in Sweden, where homogenization of nano waveguides is a subject of intense research by many experts in the field, the researcher will benefit from his experiences in France and Italy, which have strong communities on second strain gradient theory and wave computational simulation method.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Coordinator

UPPSALA UNIVERSITET
Net EU contribution
€ 206 887,68
Address
VON KRAEMERS ALLE 4
751 05 Uppsala
Sweden

See on map

Region
Östra Sverige Östra Mellansverige Uppsala län
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data