European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Fuel forming electrocatalysis: Devising multifunctional covalent organic frameworks with vinylenic linkage for electrocatalytic CO2 reduction and water oxidation

Objectif

Global energy demands and increase in the utilization of fossil fuels have contributed towards rising CO2 concentration in the atmosphere, giving rise to grave environmental concerns such as the green house effect. In order to achieve decarbonization of the energy system, the European Green Deal considers the development of innovative technologies, as the one contemplated in this project, as a key point. Generation of chemical fuels by mimicking photosynthesis is a promising technique. The significance of plant photosynthesis to convert CO2 with H2O into carbohydrates and O2 by sunlight in a green manner is widely known. Artificial photosynthesis is expected to efficiently mimic this process for reducing CO2 with H2O as electron donor, that is, integrating CO2 reduction reaction (CO2RR) and H2O oxidation half reactions in one catalytic system. Electroreduction of CO2 into value-added fuels is of significant importance but remains a big challenge because of poor selectivity, low current density, and large overpotential. Crystalline porous covalent organic frameworks (COFs) are promising alternative electrode materials for CO2RR owing to their tunable and accessible single active sites. This proposal aims at introducing a new class of COFs based electrocatalysts to rationally explore the use of heterogeneous electrocatalysts offering both chemical tunability and stability in harsh reaction conditions. The development of an electrocatalytic model system is proposed herein, which will be meticulously executed via strategic synthetic protocols and optimized by solid-state chemical procedures and crystal engineering so as to provide insights into the architecture of the COFs, reactive intermediates and mechanistic steps involved in the electrocatalytic process.

Coordinateur

FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Contribution nette de l'UE
€ 181 152,96
Adresse
AVENIDA PAISSOS CATALANS 16
43007 Tarragona
Espagne

Voir sur la carte

Région
Este Cataluña Tarragona
Type d’activité
Research Organisations
Liens
Coût total
Aucune donnée