Project description
New solutions for hydrogen energy production and storage
As the world transitions to cleaner sources of energy, hydrogen has emerged as a promising candidate due to its unique combination of scalability, long-term storage, and portability. However, its widespread adoption faces a significant challenge: the production of hydrogen from water and the generation of energy by the oxidation of hydrogen into water. With the support of the Marie Skłodowska-Curie Actions programme, the HighHydrogenML project will develop a high-throughput strategy using artificial intelligence tools to discover intermetallic compounds for efficient hydrogen energy production. Led by a team of multidisciplinary experts, the project’s overall goal is to accelerate the discovery of new intermetallic compounds for catalytic applications, opening up a feasible and efficient hydrogen economy with significant environmental benefits.
Objective
Hydrogen energy storage offers a unique combination of scalability, long-term storage, and portability, leading to the so-called hydrogen economy. The major challenge in the hydrogen economy is related to the production of hydrogen from water and the generation of energy by the oxidation of hydrogen into water. In this regard, the main objective of the project High-throughput Discovery of Catalysts for the Hydrogen Economy through Machine Learning (HighHydrogenML) is to develop a high-throughput strategy based on first principles calculations and artificial intelligence tools to discover intermetallic compounds whose catalytic activity can be tuned to reach an optimum catalytic performance for the Hydrogen Evolution Reaction (HER) and Oxygen Reduction Reaction (ORR) by means of elastic strain engineering. The successful completion of these objectives will provide unique information for experimental synthesis of intermetallic compounds with high catalytic activity for the HER and ORR and could, therefore, open a new avenue for a feasible and efficient hydrogen economy. Moreover, the strategies and tools developed in this project can be applied later to many other catalytic processes of large industrial and/or environmental interest. To achieve these goals, the project HighHydrogenML involves multidisciplinary expertise in solid state physics, materials science, machine learning, and chemistry that will be coupled in a seamless framework to exploit the high predictive power of ab initio calculations in conjunction with the efficiency of ML models. Therefore, this project brings together a researcher with expertise in atomistic and materials modelling within a broad range of different computational chemistry methods and artificial intelligence techniques, a world-recognized supervisor in the area of multiscale modelling of materials, and a research institute with a record of excellence, technology transfer, and top-level training in Materials Science and Engineering.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences chemical sciences catalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28906 Getafe
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.