Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

High-throughput Discovery of Catalysts for the Hydrogen Economy through Machine Learning

Description du projet

Nouvelles solutions de production et de stockage de l’hydrogène

Alors que le monde a amorcé une transition vers des sources d’énergie plus propres, l’hydrogène est apparu comme un candidat prometteur en raison de ses caractéristiques uniques en termes d’évolutivité, de stockage à long terme et de portabilité. Son adoption généralisée est toutefois entravée par un défi de taille: la production d’hydrogène à partir de l’eau et la production d’énergie par oxydation de l’hydrogène en eau. Soutenu par le programme Actions Marie Skłodowska-Curie, le projet HighHydrogenML mettra au point une stratégie à haut débit utilisant des outils d’intelligence artificielle pour découvrir des composés intermétalliques permettant d’assurer une production efficace d’énergie hydrogène. Piloté par une équipe d’experts pluridisciplinaires, le projet a pour objectif cardinal d’accélérer la découverte de nouveaux composés intermétalliques destinés aux applications catalytiques, ouvrant ainsi la voie à une économie de l’hydrogène réalisable et efficace qui s’accompagne d’avantages environnementaux significatifs.

Objectif

Hydrogen energy storage offers a unique combination of scalability, long-term storage, and portability, leading to the so-called hydrogen economy. The major challenge in the hydrogen economy is related to the production of hydrogen from water and the generation of energy by the oxidation of hydrogen into water. In this regard, the main objective of the project High-throughput Discovery of Catalysts for the Hydrogen Economy through Machine Learning (HighHydrogenML) is to develop a high-throughput strategy based on first principles calculations and artificial intelligence tools to discover intermetallic compounds whose catalytic activity can be tuned to reach an optimum catalytic performance for the Hydrogen Evolution Reaction (HER) and Oxygen Reduction Reaction (ORR) by means of elastic strain engineering. The successful completion of these objectives will provide unique information for experimental synthesis of intermetallic compounds with high catalytic activity for the HER and ORR and could, therefore, open a new avenue for a feasible and efficient hydrogen economy. Moreover, the strategies and tools developed in this project can be applied later to many other catalytic processes of large industrial and/or environmental interest. To achieve these goals, the project HighHydrogenML involves multidisciplinary expertise in solid state physics, materials science, machine learning, and chemistry that will be coupled in a seamless framework to exploit the high predictive power of ab initio calculations in conjunction with the efficiency of ML models. Therefore, this project brings together a researcher with expertise in atomistic and materials modelling within a broad range of different computational chemistry methods and artificial intelligence techniques, a world-recognized supervisor in the area of multiscale modelling of materials, and a research institute with a record of excellence, technology transfer, and top-level training in Materials Science and Engineering.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2022-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

FUNDACION IMDEA MATERIALES
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 174 222,96
Adresse
CALLE ERIC KANDEL 2 PARQUE CIENTIFICO Y TECNOLOGICO TECNOGETAFE
28906 Getafe
Espagne

Voir sur la carte

Région
Comunidad de Madrid Comunidad de Madrid Madrid
Type d’activité
Research Organisations
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0