Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Valence band engineering of oxidation materials for cheap and sustainable solar fuel production

Objective

Given the need to reduce our greenhouse gas emissions and our dependence on fossil fuels, there is a great interest in the development of solar fuels and especially solar H2. However, the production cost of solar H2 is still not yet competitive. Current strategies rely on converting water into H2 and O2, a low-value-added molecule. This is because process feasibility was based on the reduction half-reaction, with the oxidation half-reaction being secondary. In OMATSOLFUEL, the focus is shifted instead to the oxidation half-reaction. I will develop routes for the photoconversion of model glucose reactive mixtures and rich-glucose industrial mixtures. They are cheap, renewable, and could help micro industries become self-sufficient in fuels and energy. Instead of simply generating H2 and O2, the glucose will be photocatalytically converted into high-value-added molecules (e.g. arabinose or erythrose) and H2. These molecules would be highly interesting for plummeting the cost of solar H2 and replacing molecules produced by the petrochemical industry. To reach this objective I will design efficient and selective photocatalysts based on oxynitrides and novel chalcogenides structures. The main efforts will be on the electronic structure engineering by adjusting the S 3p, N 2p, O 2p, and metallic d orbitals to shift the valence band maximum and the oxidation potential of the photogenerated holes closer to the targeted glucose oxidation potentials. Powders and thin films will be synthesized by soft route methods and chemical or physical vapor deposition methods. The resulting morphology, structural and electronic properties will be characterized with the well-equipped platform of the Institut des Matériaux de Nantes (IMN), and in particular with photoelectron spectroscopy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 143 754,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0