Project description
Advancing neutron dosimetry for safer FLASH therapy
Cancer is a leading cause of death globally. In terms of treatment, radiotherapy (RT) plays a crucial role. A promising innovation in RT is ultra high dose-rate radiotherapy (UHDR), which includes FLASH therapy, which delivers radiation at higher doses, sparing healthy tissues while effectively targeting tumours. However, challenges remain in ensuring accurate measurement of radiation doses, particularly the secondary neutrons that can affect healthy tissue. Supported by the Marie Skłodowska-Curie Actions programme, the SiCNeutronFlash project aims to develop groundbreaking neutron dosimeters using silicon carbide (SiC) diodes. These will enable precise measurement of neutron flux and spectrum in FLASH therapy, providing data to validate the safety of this treatment approach.
Objective
Cancer is a major public health problem worldwide. According to the latest research, 20% of people will develop cancer at some point during their lifetime. Radiotherapy (RT) is the medical use of ionizing radiation to treat cancer. About 52% of cancer patients receive RT at least once during their treatment. During the last years, new RT treatment modalities are rapidly being researched, one of the most promising is the Ultra High Dose-Rate Radiotherapy (UHDR) or FLASH therapy, where the delivered dose rate is several orders of magnitude higher than the conventional one. This approach has been found to elicit significant sparing of healthy tissues with equal probability of tumor control. One of the challenges to validate and enable the clinical implementation of FLASH is the development of active dosimetry systems that allow accurate dose measurements and beam monitoring.
The experience gained in RT traditional treatments shows that secondary neutrons can produce a not insignificant undesirable parasitic dose to healthy tissue and critical organs that can induce late effects. Therefore, the measurement of neutron flux and its spectrum is key to determining potential risks in FLASH therapy. The goal of this project is the development of a novel matrix of active neutron dosimeters based on Silicon Carbide (SiC) diodes covered with different types of neutron conversion layers and moderators for characterizing the neutron contribution out-of-field in FLASH conditions. SiC has many advantages, e.g. low noise, insensitivity to visible light and temperature variations, higher radiation hardness than silicon. The host group has been the first worldwide in obtaining a SiC detector with a linear relationship between the charge collected and the dose up to 11 Gy/pulse (1.5 um pulse). To the best of our knowledge, there are no active neutron dosimeters to measure out-of-field neutron doses in FLASH conditions. We propose to create the first one in the field.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- medical and health sciences clinical medicine oncology
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.