Project description
Effective diagnosis of a rare form of dementia
Frontotemporal dementia (FTD) is a rare disorder that primarily affects the frontal and temporal lobes of the brain, leading to cognitive and behavioural changes. However, its diagnosis is challenging as the symptoms overlap with those of Alzheimer’s disease (AD). Funded by the Marie Skłodowska-Curie Actions programme, the IR4FTD project aims to develop a diagnostic approach for FTD and AD by using multimodal spectroscopy and machine learning. Rather than focusing on individual biomarkers, the project proposes a holistic approach, using vibrational spectroscopy analysis of saliva and plasma samples. With the help of advanced machine learning techniques, researchers hope to uncover hidden trends and molecular markers that will lead to a more cost-effective diagnostic tool for FTD.
Objective
The central aim of the project is to apply multimodal spectroscopy combined with machine learning to identify a fingerprint for Frontal Temporal Dementia (FTD) and Alzheimer’s disease (AD) in saliva and plasma. FTD is the second most common dementia and usually affects individuals younger than 60 years old. FTD is difficult to diagnose, since there is no single exam that determines the disease, but instead many costly or painful exams that together link the disease. Some of the symptoms of the disease may be confounding with others such as AD. While the usual search for biomarkers focuses on individual patterns, the present proposal is to use a holistic approach. Vibrational spectroscopy provides a snapshot of the entire chemical finger print in a label-free way. In this project, samples from FTD, AD, and healthy subjects of >45 years old, will be analysed using Raman, mid and near infrared spectroscopy @Monash University in Australia, and complemented with Mass Spectrometry on the same samples @ICGEB in Italy. Advanced machine learning tools provide a powerful approach for data analysis unravelling hidden trends, correlations and also identify the main contributions that characterize the type of sample. The spectra recorded using the extended wavelength range encompassing the mid-infrared and near-infrared spectral regions will be processed with state-of-the-art machine learning tools to identify the molecular phenotype and establish markers in patients with TDP and AD. These findings will pave the way to the development of a new screening tool that would decrease the costs associated with the current diagnosis of FTD and in general for neurodegenerative disorders.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine neurology dementia
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
34149 Trieste
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.