Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Characterising multi-stage landslide activity rates with synthetic aperture radar satellite data

Project description

Observing hidden landslide risks from space

Landslides, an ever-present threat in mountainous regions, have long perplexed scientists and risk managers alike. Such events are difficult to predict and can have devastating consequences. Therefore, innovative solutions are needed for detection, prediction, and mitigation. With the support of the Marie Sklodowska-Curie Actions programme, the CLARASAR project aims to improve our understanding of landslide activity using Earth observation from space. Specifically, it will use cutting-edge SAR-based techniques, particularly InSAR coherence methods, to detect multi-stage failures and reactivations. This game-changing project will be put to the test in Nepal and Papua New Guinea, where landslides are triggered by potent mixes of earthquakes and rainfall. The overall project aim is to offer a better understanding of landslide hazards and new tools for mitigation.

Objective

Landslides are a significant hazard in mountainous environments. The advent of earth observation from space has hugely increased the scope of landslide studies and improved our understanding in terms of hazard mitigation, early warning, triggering mechanisms and mass-wasting effects. Occurrences of new landslides can be observed in optical satellite images, while slow-moving landslides can be monitored using satellite radar interferometry (InSAR). However, while the spatial coverage of landslide studies has been expanded by the availability of remote sensing datasets, a complete picture of landslide activity remains difficult to obtain from satellite imagery: optical satellite images are best-suited to detection of new landslides in vegetated environments, while inSAR is limited to slow-moving landslides. Current methods therefore struggle to detect multi-stage failure or reactivation of pre-existing landslide scars for fast-moving or incoherent deformation. Here I will develop new SAR-based techniques using amplitude and coherence time series to detect multi-stage failure and reactivations. I will test and apply these techniques at a range of spatial scales (individual large landslides up to regional inventories).
I will apply to techniques to two case study areas (Nepal and Papua New Guinea) that have experienced landslides triggered by sequences of both earthquakes and rainfall. The case where landslides are triggered by a sequence of events is one where detection of multi-stage failure is particularly important: whether a landslide fails once or several times has implications for both hazard and erosion. By applying the new methods here alongside traditional remote sensing techniques, we hope to obtain a more comprehensive view of landslides than is currently possible.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 172 750,08
Address
PIAZZA DELL'ATENEO NUOVO 1
20126 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0