Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Optimising Energy Transfer in Hyperfluorescence

Project description

A breakthrough for stable and efficient blue OLEDs

Modern society relies on digital displays and lighting, making energy efficiency a critical challenge. OLED technology offers a low-energy alternative to traditional lighting and display solutions, but its full potential remains untapped. The biggest hurdle is the instability of the blue emitter, which forces manufacturers to choose between efficiency and longevity. This trade-off leads to either wasted energy or short-lived devices, limiting OLED adoption. Supported by the Marie Skłodowska-Curie Actions programme, the HyperDyad project seeks to overcome this challenge with a breakthrough in molecular design. By tethering two molecules together with a rigid bridge, the project ensures precise control over their orientation and distance, improving energy transfer efficiency. This approach promises to advance energy-efficient technology.

Objective

With an ever-growing population, reducing our demand for energy is a key challenge in building a sustainable future. As part of tackling this problem, Organic Lighting-emitting Diodes (OLEDs) show great potential for application in low-energy consumption displays, lighting, and lasers. OLEDs are increasingly featured in high end consumer electronics; however, their potential is yet to be realised. Undoubtedly, the largest problem OLEDs face today is the instability of the blue emitter. Commercial OLEDs currently employ either an inefficient but stable blue emitter (resulting in energy wastage) or an efficient but unstable blue emitter (resulting in short-lived devices).
By splitting the task of energy conversion and emission between two molecules within a device, stable and efficient blue emission is achievable. However, the current approach is to disperse these two molecules within a host, which leads to unpredictable orientations and distances between molecules. This results in detrimental processes within the device that reduce both efficiency and lifetime. Traditionally thought to be a device engineering problem, I propose a step change in thought. In a new approach to molecule design, I aim to tether the molecules together using a rigid bridging unit, forming a dyad which gives precise control over the orientation and distances within a device. I aim to explore the efficiency of energy transfer as a function of the bridging unit to develop a structure-function relationship. The results of this work will establish design criteria for dyads which will facilitate the development of both efficient and stable blue emitters.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

KARLSRUHER INSTITUT FUER TECHNOLOGIE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 173 847,36
Address
KAISERSTRASSE 12
76131 Karlsruhe
Germany

See on map

Region
Baden-Württemberg Karlsruhe Karlsruhe, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0