Objective
Networks are all around us and hugely affect us: the neurons in our brain, COVID-19 spreading through the population, or computer viruses attacking digital infrastructure via computer networks. Experts estimate that in the US alone, their government faced costs over 13.7 billion dollars due to cyberattacks in 2018. Insight into the structure and vulnerability of computer networks can help strengthen our defences against cyberattacks, reducing future cost and disruption. Analysing mathematical models of real-world networks can provide such insight. The abstract level of mathematics also makes such analyses widely applicable in various settings like hacking of computer networks and viral pandemics. Most networks change over time. They grow, shrink, and gain and lose connections, like neural plasticity, friendships made and lost, and computers breaking down. Many mathematical models, however, do not incorporate such realistic dynamics of evolving real-world networks. They only allow for network growth, not for removal of nodes and connections. This creates a gap between the theoretical knowledge and the practical use thereof.
I aim to close this gap by analysing properties of two models for real-world networks that incorporate realistic dynamics: Preferential attachment with vertex and edge removal and first-passage percolation on weight-dependent random connection models. The outcomes of this research can influence policy discussions around protecting digital infrastructure and our response to viral pandemics, tying in with the European Commission’s current priorities regarding digitalisation and health within NextGenerationEU.
The research through training provided within this fellowship will provide me with leadership skills and more experience in writing grant proposals and supervising students. Combined with its scientific training, it will help me solidify my potential as an early-career researcher and obtain a tenure-track position at a top European university.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology virology
- medical and health sciences health sciences public health epidemiology pandemics
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
86159 Augsburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.