Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Life-long health monitoring and assessment for lifetime maximization of Li-ion batteries

Project description

Prolonging the lifespan of lithium-ion batteries

Lithium-ion batteries power our modern world, but their limited lifespan poses a growing concern. The accuracy of crucial parameters like state of charge and state of health is vital for battery performance and sustainability. However, there's a critical issue at hand: the limited lifespan of these batteries. With the support of Marie Skłodowska-Curie Actions, the BattMaxLife project integrates a novel impedance measurement method into battery packs, enhancing the parameters' precision, optimising battery use, and ultimately, extending their lifespan, revolutionising the way we harness energy. With enhanced BMS capabilities, lithium-ion batteries can be optimised for their primary applications such as electric vehicles, significantly prolonging their first life. By extending the life of lithium-ion batteries, it’s possible to reduce waste and conserve resources.

Objective

Lithium-ion (Li-ion) batteries have an integrated battery management system (BMS) whose performance is critical in maximizing the available life of the batteries and increasing their sustainability. The BMS monitors state parameters, such as state-of-charge (SOC) and state-of-health (SOH), for safety and performance optimization purposes. The accuracy of these parameters plays a critical role in maximizing the available battery lifetime. This MSCA fellowship project aims to maximize the available lifetime of Li-ion batteries (and subsequently the lifetime of their applications) by making the battery impedance accessible in real-time for the BMS state estimation algorithms by using a novel ternary-sequence impedance measurement method that is integrated onboard the battery pack. The impedance-based SOC and SOH estimation algorithms will offer higher accuracy compared to the available traditional algorithms. Thus, the BMS will be able to optimize the battery's use and consequently maximize its life in its primary application (i.e. first-life application), such as in electric vehicles. Despite lacking the performance for the primary application, the battery is still likely to be used in a less demanding application, i.e. stationary energy storage. With adequate health information available (using the novel impedance-based algorithms) at the end of its first-life, the battery will become an attractive candidate for second-life application, as reliable predictions can be made about its remaining lifetime, safety, and economic value. With first-life maximized and second life provided for the battery pack, the lifetime of the battery is significantly prolonged before the eventual recycling, increasing Li-ion batteries' sustainability
This highly innovative project has a high scientific, economic, and societal impact. Furthermore, the project will allow the applicant to enrich his technical and managerial skills thus boosting his career prospects and enlarging his horizon

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

AALBORG UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 230 774,40
Address
FREDRIK BAJERS VEJ 7K
9220 AALBORG
Denmark

See on map

Region
Danmark Nordjylland Nordjylland
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0