Project description
Building fluid and particle dynamics in heavy-ion collisions
In heavy-ion collisions, such as those in the Large Hadron Collider (LHC) and the Relativistic Heavy-Ion Collider (RHIC), a hot, expanding environment is created, transitioning from a quark-gluon plasma (QGP) to hadrons. This transition occurs as the system cools and expands, with QGP behaving like a nearly perfect fluid, describable by relativistic hydrodynamics. These hydrodynamic models explain correlations among hadrons in larger systems. However, smaller systems, such as proton-proton or proton-lead collisions, present a challenge, as they do not show thermalised behaviour. Supported by the Marie Skłodowska-Curie Actions programme, the KineticTheoryQGP project aims to develop a computational tool that bridges hydrodynamics and kinetic theory, providing insights into the expansion of both small and large collision systems.
Objective
A hot expanding environment is produced in heavy-ion (e.g. lead-lead or gold-gold) collisions in the Large Hadron Collider (LHC) and Relativistic Heavy Ion Collider (RHIC). The produced system expands and cools down, turning from a phase with liberated quarks and gluons, called quark-gluon plasma (QGP), to hadrons, detectable in the detectors. The QGP behaves like a nearly perfect fluid that can be modeled via relativistic hydrodynamics with the smallest observed shear and bulk viscosity over entropy density. In the course of the collective expansion, the degrees-of-freedom interaction develops correlation, reflected in the correlation among final hadrons. Models based on hydrodynamics successfully describe the observed correlations in the experiments.
Observing a similar correlation among final hadrons emitted from much smaller collision systems, e.g. proton-proton and proton-lead, has triggered debates about the nature of the collectivity in such scenarios. Studies show that the models based on hydrodynamics become less predictive in smaller system collisions. In these systems, one does not expect a thermalized medium, and a framework beyond hydrodynamics is required to explain the true underlying mechanism in collective expansion.
The main objective of the current project is to prepare a computational tool in the form of an event generator based on the kinetic theory with isotropization time approximation. Among an extensive list of heavy-ion collective models, this event generator will be unique in explaining small systems that behave particle-like and large systems that act fluid-like in a single framework. The model can bridge the experimental measurements and theoretical studies to quantitatively analyze the fluid-like/particle-like nature of large and small system collisions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences theoretical physics particle physics particle accelerator
- natural sciences physical sciences theoretical physics particle physics gluons
- natural sciences physical sciences theoretical physics particle physics quarks
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.