Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Assessing the adaptive role of subindividual trait variation via epigenetic changes for ecosystem functioning under climate change.

Project description

Researching plant adaptability through sub-individual trait variation

The peril posed by climate change and human-induced impacts on the environment underscores the vital significance of studying and researching environmental and biological processes. These pursuits are regarded as a fertile wellspring of solutions with the potential to effectively counteract environmental degradation and shifts. Among these processes, variability stands out as particularly noteworthy. The MSCA-funded VARSUBIN project is dedicated to delving into sub-individual trait variation in plants. Its overarching objective is to uncover potential avenues through which climate change might exert influence on this phenomenon. The project is poised to employ cutting-edge experimental methodologies within a dedicated research facility to achieve its objectives.

Objective

Variability is one of the few consistent characteristics of biological systems occurring at different levels of organization, from biomes to individuals. Moreover, at individual level, a vast amount of trait variation occurs within single individuals of modular organisms such as plants. Subindividual trait variation is mainly due to organ level phenotypic plasticity, and it has an epigenetic basis. In plants, subindividual trait variation occurs between multiple repeated organs, such as different leaves, fruits, flowers, and which are reruns of the same genotype under different micro-environmental conditions. Subindividual variation can be larger than among individual or among population variation, being a major source of phenotypic variation in nature. However, because subindividual variation is generated within individual genotypes, it has been inaccurately assumed to be invisible to ecological or evolutionary processes. Therefore, its adaptative role to global changes as well as the associated potential impact on ecosystem functioning is currently unknown. Given the importance of biodiversity for ecosystem functioning and mitigation of anthropogenic change, understanding the evolutionary and ecological consequences of a vast biodiversity asset such as subindividual trait variation is a major scientific and societal challenge. The main goal of this Marie Sklodowska-Curie fellowship is to evaluate the role of subindividual variation for plant adaptation to climatic change and to quantify the knock-on effects on ecosystem functions. To achieve this goal MS proposes a multi-generational artificial-selection and ecosystem experiment at a state-of-the-art experimental research facility (the Ecotron of Montpellier) equipped for automatic high-frequency measurements of multiple ecosystem processes (e.g. CO2 net ecosystem exchange, water use efficiency) and stable isotope 13CO2 labeling (for estimation of soil carbon storage).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution
€ 211 754,88
Address
RUE MICHEL ANGE 3
75794 Paris
France

See on map

Region
Ile-de-France Ile-de-France Hauts-de-Seine
Activity type
Research Organisations
Links
Total cost
No data