Project description
Mechanical deformation: disrupting biofilms, controlling implant-related infections
Microorganisms like bacteria form communities encapsulated in an extracellular polymeric matrix that attaches to surfaces. These biofilms are very difficult to combat – the encapsulation forms a powerful barrier to antibiotics and chemicals. Whether on hospital surfaces, implants, or prosthetic devices, these biofilms can cause life-threatening infections. With the support of the Marie Skłodowska-Curie Actions programme, the MOBILE project will investigate the potential of mechanical deformation to cause detachment and surface cleaning. Specifically, using various ‘wrinkled’ surfaces and fluid shear, it will investigate effects on bacterial proliferation, motility, and viability. Then, it will deform the wrinkled topographies in the search for new ways of bacterial removal.
Objective
"Microbes have remarkable capabilities to attach to surfaces of natural and artificial systems, eventually leading to the formation of biofilms and associated chronic and persistent infections. It is extremely appealing to understand how bacteria interact with three- dimensional surface topographies and how to design smart patterns as a strategy to create antifouling and biocidal materials. Here I propose a dynamic strategy, merging verstile and large-scale surface modification teqhniques based on mechanical wrinkling of soft bilayers, that I developed at Imperial College London, microfluidics and microbiology. The goal of MOBILE is investigating the mechanical confinement exerted by non-planar surface curvatures and spatial heterogeneities induced by fluid shear on bacterial initial attachment and removal, in confined environments. Specifically (Aim 1), I will evaluate the combined action of surface topography and fluid shear over bacterial proliferation, motitly and viability, incorporating nano- to micro-scaled wrinkled geometries in microfluidic channels, mimicking biological tissues surfaces and implantable medical devices, testing a series of different clinically relevant bacterial strains (such as Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae). I will also (Aim 2) develop antifouling and removal strategies by investigating the mechanical response of adhered bacteria, using patterned surfaces as stimuli-responsive probes ""actuated"" by means of mechanical deformation (i.e. by extension and compression of the wrinkled topographies) to induce detachment and surface cleaning under fluid dynamic conditions. Overall, I aim to elucidate new methodologies for bacterial removal at different stages of biofilm formation paving the way towards the development of new classes of biomedical devices and to contribute to an important step in direction of controlling implant-associated infections."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- medical and health sciences clinical medicine pneumology
- natural sciences biological sciences microbiology bacteriology
- natural sciences physical sciences astronomy planetary sciences planetary geology
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20072 PIEVE EMANUELE
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.